2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Modeling the Geospatial Evolution of COVID-19 using Spatio-temporal Convolutional Sequence-to-sequence Neural Networks

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Europe was hit hard by the COVID-19 pandemic and Portugal was severely affected, having suffered three waves in the first twelve months. Approximately between January 19th and February 5th 2021 Portugal was the country in the world with the largest incidence rate, with 14-day incidence rates per 100,000 inhabitants in excess of 1,000. Despite its importance, accurate prediction of the geospatial evolution of COVID-19 remains a challenge, since existing analytical methods fail to capture the complex dynamics that result from the contagion within a region and the spreading of the infection from infected neighboring regions.

          We use a previously developed methodology and official municipality level data from the Portuguese Directorate-General for Health (DGS), relative to the first twelve months of the pandemic, to compute an estimate of the incidence rate in each location of mainland Portugal. The resulting sequence of incidence rate maps was then used as a gold standard to test the effectiveness of different approaches in the prediction of the spatial-temporal evolution of the incidence rate. Four different methods were tested: a simple cell level autoregressive moving average (ARMA) model, a cell level vector autoregressive (VAR) model, a municipality-by-municipality compartmental SIRD model followed by direct block sequential simulation, and a new convolutional sequence-to-sequence neural network model based on the STConvS2S architecture. We conclude that the modified convolutional sequence-to-sequence neural network is the best performing method in this task, when compared with the ARMA, VAR, and SIRD models, as well as with the baseline ConvLSTM model.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Long Short-Term Memory

          Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A Contribution to the Mathematical Theory of Epidemics

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prevalence of Asymptomatic SARS-CoV-2 Infection

              Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly throughout the world since the first cases of coronavirus disease 2019 (COVID-19) were observed in December 2019 in Wuhan, China. It has been suspected that infected persons who remain asymptomatic play a significant role in the ongoing pandemic, but their relative number and effect have been uncertain. The authors sought to review and synthesize the available evidence on asymptomatic SARS-CoV-2 infection. Asymptomatic persons seem to account for approximately 40% to 45% of SARS-CoV-2 infections, and they can transmit the virus to others for an extended period, perhaps longer than 14 days. Asymptomatic infection may be associated with subclinical lung abnormalities, as detected by computed tomography. Because of the high risk for silent spread by asymptomatic persons, it is imperative that testing programs include those without symptoms. To supplement conventional diagnostic testing, which is constrained by capacity, cost, and its one-off nature, innovative tactics for public health surveillance, such as crowdsourcing digital wearable data and monitoring sewage sludge, might be helpful.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ACM Transactions on Spatial Algorithms and Systems
                ACM Trans. Spatial Algorithms Syst.
                Association for Computing Machinery (ACM)
                2374-0353
                2374-0361
                December 31 2022
                December 2022
                December 31 2022
                : 8
                : 4
                : 1-19
                Affiliations
                [1 ]INESC-ID/Instituto Superior Técnico, Lisboa, Portugal
                [2 ]CERENA/Instituto Superior Técnico, Lisboa, Portugal
                [3 ]ITI/Instituto Superior Técnico, Lisboa, Portugal
                Article
                10.1145/3550272
                cfbfda7a-9035-4a53-9418-691a89eb399f
                © 2022
                History

                Comments

                Comment on this article