0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sorption-enhanced chemical looping steam reforming of glycerol with CO2 in-situ capture and utilization

      , , , , ,
      Chemical Engineering Journal
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          A review of dry (CO2) reforming of methane over noble metal catalysts.

          Dry (CO2) reforming of methane (DRM) is a well-studied reaction that is of both scientific and industrial importance. This reaction produces syngas that can be used to produce a wide range of products, such as higher alkanes and oxygenates by means of Fischer-Tropsch synthesis. DRM is inevitably accompanied by deactivation due to carbon deposition. DRM is also a highly endothermic reaction and requires operating temperatures of 800-1000 °C to attain high equilibrium conversion of CH4 and CO2 to H2 and CO and to minimize the thermodynamic driving force for carbon deposition. The most widely used catalysts for DRM are based on Ni. However, many of these catalysts undergo severe deactivation due to carbon deposition. Noble metals have also been studied and are typically found to be much more resistant to carbon deposition than Ni catalysts, but are generally uneconomical. Noble metals can also be used to promote the Ni catalysts in order to increase their resistance to deactivation. In order to design catalysts that minimize deactivation, it is necessary to understand the elementary steps involved in the activation and conversion of CH4 and CO2. This review will cover DRM literature for catalysts based on Rh, Ru, Pt, and Pd metals. This includes the effect of these noble metals on the kinetics, mechanism and deactivation of these catalysts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO

            Large-scale carbon fixation requires high-volume chemicals production from carbon dioxide. Dry reforming of methane could provide an economically feasible route if coke- and sintering-resistant catalysts were developed. Here, we report a molybdenum-doped nickel nanocatalyst that is stabilized at the edges of a single-crystalline magnesium oxide (MgO) support and show quantitative production of synthesis gas from dry reforming of methane. The catalyst runs more than 850 hours of continuous operation under 60 liters per unit mass of catalyst per hour reactive gas flow with no detectable coking. Synchrotron studies also show no sintering and reveal that during activation, 2.9 nanometers as synthesized crystallites move to combine into stable 17-nanometer grains at the edges of MgO crystals above the Tammann temperature. Our findings enable an industrially and economically viable path for carbon reclamation, and the “Nanocatalysts On Single Crystal Edges” technique could lead to stable catalyst designs for many challenging reactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle.

              Efficient CO2 transformation from a waste product to a carbon source for chemicals and fuels will require reaction conditions that effect its reduction. We developed a "super-dry" CH4 reforming reaction for enhanced CO production from CH4 and CO2 We used Ni/MgAl2O4 as a CH4-reforming catalyst, Fe2O3/MgAl2O4 as a solid oxygen carrier, and CaO/Al2O3 as a CO2 sorbent. The isothermal coupling of these three different processes resulted in higher CO production as compared with that of conventional dry reforming, by avoiding back reactions with water. The reduction of iron oxide was intensified through CH4 conversion to syngas over Ni and CO2 extraction and storage as CaCO3 CO2 is then used for iron reoxidation and CO production, exploiting equilibrium shifts effected with inert gas sweeping (Le Chatelier's principle). Super-dry reforming uses up to three CO2 molecules per CH4 and offers a high CO space-time yield of 7.5 millimole CO per second per kilogram of iron at 1023 kelvin.
                Bookmark

                Author and article information

                Journal
                Chemical Engineering Journal
                Chemical Engineering Journal
                Elsevier BV
                13858947
                January 2023
                January 2023
                : 452
                : 139703
                Article
                10.1016/j.cej.2022.139703
                cfbf5ddc-89cc-4428-8b83-2404232ba6f0
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article