2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Link-INVENT: generative linker design with reinforcement learning

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Link-INVENT enables design of PROTACs, fragment linking, and scaffold hopping while satisfying multiple optimization criteria.

          Abstract

          In this work, we present Link-INVENT as an extension to the existing de novo molecular design platform REINVENT. We provide illustrative examples on how Link-INVENT can be applied to fragment linking, scaffold hopping, and PROTAC design case studies where the desirable molecules should satisfy a combination of different criteria. With the help of reinforcement learning, the agent used by Link-INVENT learns to generate favourable linkers connecting molecular subunits that satisfy diverse objectives, facilitating practical application of the model for real-world drug discovery projects. We also introduce a range of linker-specific objectives in the Scoring Function of REINVENT. The code is freely available at https://github.com/MolecularAI/Reinvent.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Long Short-Term Memory

          Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.

            Unlike other methods for docking ligands to the rigid 3D structure of a known protein receptor, Glide approximates a complete systematic search of the conformational, orientational, and positional space of the docked ligand. In this search, an initial rough positioning and scoring phase that dramatically narrows the search space is followed by torsionally flexible energy optimization on an OPLS-AA nonbonded potential grid for a few hundred surviving candidate poses. The very best candidates are further refined via a Monte Carlo sampling of pose conformation; in some cases, this is crucial to obtaining an accurate docked pose. Selection of the best docked pose uses a model energy function that combines empirical and force-field-based terms. Docking accuracy is assessed by redocking ligands from 282 cocrystallized PDB complexes starting from conformationally optimized ligand geometries that bear no memory of the correctly docked pose. Errors in geometry for the top-ranked pose are less than 1 A in nearly half of the cases and are greater than 2 A in only about one-third of them. Comparisons to published data on rms deviations show that Glide is nearly twice as accurate as GOLD and more than twice as accurate as FlexX for ligands having up to 20 rotatable bonds. Glide is also found to be more accurate than the recently described Surflex method.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                DDIIAI
                Digital Discovery
                Digital Discovery
                Royal Society of Chemistry (RSC)
                2635-098X
                April 11 2023
                2023
                : 2
                : 2
                : 392-408
                Affiliations
                [1 ]Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
                [2 ]Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
                [3 ]Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
                [4 ]Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg 41756, Sweden
                Article
                10.1039/D2DD00115B
                cfb7191f-42d5-4dfb-be0e-df815beeb13a
                © 2023

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article