120
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasmodium falciparum Erythrocyte Membrane Protein 1 Diversity in Seven Genomes – Divide and Conquer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The var gene encoded hyper-variable Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediates cytoadhesion of infected erythrocytes to human endothelium. Antibodies blocking cytoadhesion are important mediators of malaria immunity acquired by endemic populations. The development of a PfEMP1 based vaccine mimicking natural acquired immunity depends on a thorough understanding of the evolved PfEMP1 diversity, balancing antigenic variation against conserved receptor binding affinities. This study redefines and reclassifies the domains of PfEMP1 from seven genomes. Analysis of domains in 399 different PfEMP1 sequences allowed identification of several novel domain classes, and a high degree of PfEMP1 domain compositional order, including conserved domain cassettes not always associated with the established group A–E division of PfEMP1. A novel iterative homology block (HB) detection method was applied, allowing identification of 628 conserved minimal PfEMP1 building blocks, describing on average 83% of a PfEMP1 sequence. Using the HBs, similarities between domain classes were determined, and Duffy binding-like (DBL) domain subclasses were found in many cases to be hybrids of major domain classes. Related to this, a recombination hotspot was uncovered between DBL subdomains S2 and S3. The VarDom server is introduced, from which information on domain classes and homology blocks can be retrieved, and new sequences can be classified. Several conserved sequence elements were found, including: (1) residues conserved in all DBL domains predicted to interact and hold together the three DBL subdomains, (2) potential integrin binding sites in DBLα domains, (3) an acylation motif conserved in group A var genes suggesting N-terminal N-myristoylation, (4) PfEMP1 inter-domain regions proposed to be elastic disordered structures, and (5) several conserved predicted phosphorylation sites. Ideally, this comprehensive categorization of PfEMP1 will provide a platform for future studies on var/PfEMP1 expression and function.

          Author Summary

          About one million African children die from malaria every year. The severity of malaria infections in part depends on which type of the parasitic protein PfEMP1 is expressed on the surface of the infected red blood cells. Natural immunity to malaria is mediated through antibodies to PfEMP1. Therefore hopes for a malaria vaccine based on PfEMP1 proteins have been raised. However, the large sequence variation among PfEMP1 molecules has caused great difficulties in executing and interpreting studies on PfEMP1. Here, we present an extensive sequence analysis of all currently available PfEMP1 sequences and show that PfEMP1 variation is ordered and can be categorized at different levels. In this way, PfEMP1 belong to group A–E and are composed of up to four components, each component containing specific DBL or CIDR domain subclasses, which in some cases form entire conserved domain combinations. Finally, each PfEMP1 can be described in high detail as a combination of 628 homology blocks. This dissection of PfEMP1 diversity also enables predictions of several functional sequence motifs relevant to the fold of PfEMP1 proteins and their ability to bind human receptors. We therefore believe that this description of PfEMP1 diversity is necessary and helpful for the design and interpretation of future PfEMP1 studies.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          RGD and other recognition sequences for integrins.

          Proteins that contain the Arg-Gly-Asp (RGD) attachment site, together with the integrins that serve as receptors for them, constitute a major recognition system for cell adhesion. The RGD sequence is the cell attachment site of a large number of adhesive extracellular matrix, blood, and cell surface proteins, and nearly half of the over 20 known integrins recognize this sequence in their adhesion protein ligands. Some other integrins bind to related sequences in their ligands. The integrin-binding activity of adhesion proteins can be reproduced by short synthetic peptides containing the RGD sequence. Such peptides promote cell adhesion when insolubilized onto a surface, and inhibit it when presented to cells in solution. Reagents that bind selectively to only one or a few of the RGD-directed integrins can be designed by cyclizing peptides with selected sequences around the RGD and by synthesizing RGD mimics. As the integrin-mediated cell attachment influences and regulates cell migration, growth, differentiation, and apoptosis, the RGD peptides and mimics can be used to probe integrin functions in various biological systems. Drug design based on the RGD structure may provide new treatments for diseases such as thrombosis, osteoporosis, and cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta.

            Women are particularly susceptible to malaria during first and second pregnancies, even though they may have developed immunity over years of residence in endemic areas. Plasmodium falciparum-infected red blood cells (IRBCs) were obtained from human placentas. These IRBCs bound to purified chondroitin sulfate A (CSA) but not to other extracellular matrix proteins or to other known IRBC receptors. IRBCs from nonpregnant donors did not bind to CSA. Placental IRBCs adhered to sections of fresh-frozen human placenta with an anatomic distribution similar to that of naturally infected placentas, and this adhesion was competitively inhibited by purified CSA. Thus, adhesion to CSA appears to select for a subpopulation of parasites that causes maternal malaria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes.

              Plasmodium falciparum-infected human erythrocytes evade host immunity by expression of a cell-surface variant antigen and receptors for adherence to endothelial cells. These properties have been ascribed to P. falciparum erythrocyte membrane protein 1 (PfEMP1), an antigenically diverse malarial protein of 200-350 kDa on the surface of parasitized erythrocytes (PEs). We describe the cloning of two related PfEMP1 genes from the Malayan Camp (MC) parasite strain. Antibodies generated against recombinant protein fragments of the genes were specific for MC strain PfEMP1 protein. These antibodies reacted only with the surface of MC strain PEs and blocked adherence of these cells to CD36 but without effect on adherence to thrombospondin. Multiple forms of the PfEMP1 gene are apparent in MC parasites. The molecular basis for antigenic variation in malaria and adherence of infected erythrocytes to host cells can now be pursued.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                September 2010
                September 2010
                16 September 2010
                : 6
                : 9
                : e1000933
                Affiliations
                [1 ]Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
                [2 ]Centre for Medical Parasitology, Department of Medical Microbiology and Immunology, University of Copenhagen, Copehagen, Denmark
                University of California Davis, United States of America
                Author notes

                Conceived and designed the experiments: TSR AGP TL. Performed the experiments: TSR DAH TL. Analyzed the data: TSR DAH TGT AGP TL. Contributed reagents/materials/analysis tools: TSR AGP. Wrote the paper: TSR TL.

                Article
                10-PLCB-RA-2021R2
                10.1371/journal.pcbi.1000933
                2940729
                20862303
                cf9ab0df-fe79-4af7-b398-17a67e1ad3de
                Rask et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 April 2010
                : 16 August 2010
                Page count
                Pages: 23
                Categories
                Research Article
                Cell Biology/Cell Adhesion
                Genetics and Genomics
                Infectious Diseases/Protozoal Infections
                Infectious Diseases/Tropical and Travel-Associated Diseases
                Molecular Biology/Recombination

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article

                scite_
                363
                15
                772
                3
                Smart Citations
                363
                15
                772
                3
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content26

                Cited by162

                Most referenced authors3,936