There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Abstract
Background
Latin America (Latam) has a tradition of large-scale vaccine trials. Because of fluctuating
demand, many sites have downsized their infrastructure. Therefore, BMGF launched a
clinical trial site-readiness initiative early in the coronavirus-2019 (COVID-19)
pandemic including Latam countries between August and September 2020. This survey
evaluated clinical development performance measures pre/post initiative (September
2022).
Results
20/21 prequalified sites participated in COVID-19 vaccine/drug development trials.
156 clinical trials (140 COVID-19 vaccine/drug trials) were initiated in the 2 years
since prequalification, compared to 176 in the 5 years before. 33,428/37,810 participants
were included in COVID-19 programs. The number of enrolled subjects/day across sites
quadrupled from 15 (1–35) to 63 (5–300). The dropout rate was 6.8%. Study approval
timelines were reduced from 60 (12–120) to 35 (5–90) days. Mean qualified staff was
increased from 24 (6–80) to 88 (22–180).
Conclusion
Clinical trial sites across Latam were successfully prequalified to participate in
COVID-19 developments. For the 100 days mission of vaccine availability in a new pandemic
sufficient and well-trained clinical trial sites readily available are essential.
This is only achievable if sites—especially in low/middle-income countries—are maintained
active through a constant flow of vaccine studies.
Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; p interaction =0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. Funding UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D’Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca.
Background The ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, Medicines and Healthcare products Regulatory Agency, with a regimen of two standard doses given with an interval of 4–12 weeks. The planned roll-out in the UK will involve vaccinating people in high-risk categories with their first dose immediately, and delivering the second dose 12 weeks later. Here, we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered. Methods We present data from three single-blind randomised controlled trials—one phase 1/2 study in the UK (COV001), one phase 2/3 study in the UK (COV002), and a phase 3 study in Brazil (COV003)—and one double-blind phase 1/2 study in South Africa (COV005). As previously described, individuals 18 years and older were randomly assigned 1:1 to receive two standard doses of ChAdOx1 nCoV-19 (5 × 1010 viral particles) or a control vaccine or saline placebo. In the UK trial, a subset of participants received a lower dose (2·2 × 1010 viral particles) of the ChAdOx1 nCoV-19 for the first dose. The primary outcome was virologically confirmed symptomatic COVID-19 disease, defined as a nucleic acid amplification test (NAAT)-positive swab combined with at least one qualifying symptom (fever ≥37·8°C, cough, shortness of breath, or anosmia or ageusia) more than 14 days after the second dose. Secondary efficacy analyses included cases occuring at least 22 days after the first dose. Antibody responses measured by immunoassay and by pseudovirus neutralisation were exploratory outcomes. All cases of COVID-19 with a NAAT-positive swab were adjudicated for inclusion in the analysis by a masked independent endpoint review committee. The primary analysis included all participants who were SARS-CoV-2 N protein seronegative at baseline, had had at least 14 days of follow-up after the second dose, and had no evidence of previous SARS-CoV-2 infection from NAAT swabs. Safety was assessed in all participants who received at least one dose. The four trials are registered at ISRCTN89951424 (COV003) and ClinicalTrials.gov, NCT04324606 (COV001), NCT04400838 (COV002), and NCT04444674 (COV005). Findings Between April 23 and Dec 6, 2020, 24 422 participants were recruited and vaccinated across the four studies, of whom 17 178 were included in the primary analysis (8597 receiving ChAdOx1 nCoV-19 and 8581 receiving control vaccine). The data cutoff for these analyses was Dec 7, 2020. 332 NAAT-positive infections met the primary endpoint of symptomatic infection more than 14 days after the second dose. Overall vaccine efficacy more than 14 days after the second dose was 66·7% (95% CI 57·4–74·0), with 84 (1·0%) cases in the 8597 participants in the ChAdOx1 nCoV-19 group and 248 (2·9%) in the 8581 participants in the control group. There were no hospital admissions for COVID-19 in the ChAdOx1 nCoV-19 group after the initial 21-day exclusion period, and 15 in the control group. 108 (0·9%) of 12 282 participants in the ChAdOx1 nCoV-19 group and 127 (1·1%) of 11 962 participants in the control group had serious adverse events. There were seven deaths considered unrelated to vaccination (two in the ChAdOx1 nCov-19 group and five in the control group), including one COVID-19-related death in one participant in the control group. Exploratory analyses showed that vaccine efficacy after a single standard dose of vaccine from day 22 to day 90 after vaccination was 76·0% (59·3–85·9). Our modelling analysis indicated that protection did not wane during this initial 3-month period. Similarly, antibody levels were maintained during this period with minimal waning by day 90 (geometric mean ratio [GMR] 0·66 [95% CI 0·59–0·74]). In the participants who received two standard doses, after the second dose, efficacy was higher in those with a longer prime-boost interval (vaccine efficacy 81·3% [95% CI 60·3–91·2] at ≥12 weeks) than in those with a short interval (vaccine efficacy 55·1% [33·0–69·9] at <6 weeks). These observations are supported by immunogenicity data that showed binding antibody responses more than two-fold higher after an interval of 12 or more weeks compared with an interval of less than 6 weeks in those who were aged 18–55 years (GMR 2·32 [2·01–2·68]). Interpretation The results of this primary analysis of two doses of ChAdOx1 nCoV-19 were consistent with those seen in the interim analysis of the trials and confirm that the vaccine is efficacious, with results varying by dose interval in exploratory analyses. A 3-month dose interval might have advantages over a programme with a short dose interval for roll-out of a pandemic vaccine to protect the largest number of individuals in the population as early as possible when supplies are scarce, while also improving protection after receiving a second dose. Funding UK Research and Innovation, National Institutes of Health Research (NIHR), The Coalition for Epidemic Preparedness Innovations, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D’Or, the Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca.
In light of the increasing rate of dengue infections throughout the world despite vector-control measures, several dengue vaccine candidates are in development. In a phase 3 efficacy trial of a tetravalent dengue vaccine in five Latin American countries where dengue is endemic, we randomly assigned healthy children between the ages of 9 and 16 years in a 2:1 ratio to receive three injections of recombinant, live, attenuated, tetravalent dengue vaccine (CYD-TDV) or placebo at months 0, 6, and 12 under blinded conditions. The children were then followed for 25 months. The primary outcome was vaccine efficacy against symptomatic, virologically confirmed dengue (VCD), regardless of disease severity or serotype, occurring more than 28 days after the third injection. A total of 20,869 healthy children received either vaccine or placebo. At baseline, 79.4% of an immunogenicity subgroup of 1944 children had seropositive status for one or more dengue serotypes. In the per-protocol population, there were 176 VCD cases (with 11,793 person-years at risk) in the vaccine group and 221 VCD cases (with 5809 person-years at risk) in the control group, for a vaccine efficacy of 60.8% (95% confidence interval [CI], 52.0 to 68.0). In the intention-to-treat population (those who received at least one injection), vaccine efficacy was 64.7% (95% CI, 58.7 to 69.8). Serotype-specific vaccine efficacy was 50.3% for serotype 1, 42.3% for serotype 2, 74.0% for serotype 3, and 77.7% for serotype 4. Among the severe VCD cases, 1 of 12 was in the vaccine group, for an intention-to-treat vaccine efficacy of 95.5%. Vaccine efficacy against hospitalization for dengue was 80.3%. The safety profile for the CYD-TDV vaccine was similar to that for placebo, with no marked difference in rates of adverse events. The CYD-TDV dengue vaccine was efficacious against VCD and severe VCD and led to fewer hospitalizations for VCD in five Latin American countries where dengue is endemic. (Funded by Sanofi Pasteur; ClinicalTrials.gov number, NCT01374516.).
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.