0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pathophysiology and transcriptomic responses of Pinus armandii defenses to ophiostomatoid fungi.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pinus armandii is an ecologically and economically important evergreen tree species native to western China. Dendroctonus armandi and pathogenic ophiostomatoid fungi pose substantial threats to P. armandii. With the interplay between species, the defense mechanisms of P. armandii have evolved to withstand external biotic stressors. However, the interactions between P. armandii and pathogenic ophiostomatoid fungal species/strains remain poorly understood. We aimed to analyze the pathophysiological and molecular changes in P. armandii following artificial inoculation with four ophiostomatoid species (Graphilbum parakesiyea, Leptographium qinlingense, Ophiostoma shennongense, and Ophiostoma sp. 1). The study revealed that L. qinlingense produced the longest necrotic lesions, and G. parakesiyea produced the shortest. All strains induced monoterpenoid release, and monoterpene levels of P. armandii were positively correlated with fungal virulence (R2 = 0.93, P < 0.01). Co-inoculation of two dominant highly (L. qinlingense) and weakly virulent (O. shennongense) pathogens reduced the pathogenicity of the highly virulent fungi. Transcriptomic analysis of P. armandii (LQ: L. qinlingense treatments, QS: co-inoculation treatments, and OS: O. shennongense treatments) showed that the expression pattern of differentially expressed genes (DEGs) between QS and OS was similar, but different from that of LQ. The DEGs (LQ vs. QS) involved in flavonoid biosynthesis and phenylpropanoid biosynthesis were downregulated. Notably, compared with LQ, QS significantly decreased the expression of host defense-related genes. This study provides a valuable theoretical basis for managing infestations of D. armandi and associated ophiostomatoid fungi.

          Related collections

          Author and article information

          Journal
          Tree Physiol
          Tree physiology
          Oxford University Press (OUP)
          1758-4469
          0829-318X
          May 22 2024
          Affiliations
          [1 ] Key Laboratory of Forest Protection of National Forestry and Grassland Administration; Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China.
          Article
          7679398
          10.1093/treephys/tpae056
          38775221
          cf7475b5-b989-4778-9fa6-e9a804e6def7
          History

          virulence,co-inoculation,host pathogen interactions,phenylpropanoid and flavonoid biosyntheses,terpenes

          Comments

          Comment on this article