3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chest CT and Hospital Outcomes in Patients with Omicron Compared with Delta Variant SARS-CoV-2 Infection

      research-article
      , BM BCh BA(hons) PGDip FRCR 1 , * , + , , , BM BCh BA(hons) PGDip MRCP 1 , 2 , 3 , * , , BSc, BMBS FRCR 1 , , BMBS MMedSc PGCert 1 , , MBChB, BSc (Hons), PGDip, FRCR 1 , , MB BChir BSc (hons) MRCP FRCR 1 , , BM BCh BA(Hons) FRCR 1 , , B MedSci MBBS MRCP FRCR 1 , , MD FRCPath 1 , , BM BCh MA DPhil MRCP 1 , 5 , , MB BChir MA MRCP FRCR 1 , , BM BCh DPhil 1 , 4 , ** , , FRCP FRCR 1 , **
      Radiology
      Radiological Society of North America

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The SARS-Cov-2 Omicron variant demonstrates rapid spread but with reduced disease severity. Studies evaluating the lung imaging findings of Omicron infection versus non-Omicron variants remain lacking.

          Purpose

          To compare Omicron and Delta variants of SARS-CoV-2 by their chest CT radiological pattern, biochemical parameters, clinical severity and hospital outcomes after adjusting for vaccination status.

          Materials and Methods

          Retrospective study of hospitalized adult patients rt-PCR positive for SARS-CoV-2 with CT pulmonary angiography performed within 7 days of admission between December 1, 2021 and January 14, 2022. Blinded radiological analysis with multiple readers including RSNA CT classification, chest CT severity score (CT-SS, range 0 least severe to 25 most severe) and CT imaging features including bronchial wall thickening.

          Results

          106 patients (Delta n=66, Omicron n=40) were evaluated (mean age, 58 years ± 18, 58 men). In the Omicron group, 37% (15/40) of CT pulmonary angiograms were categorized as normal compared with 15% (10/66) in the Delta group (p=.016). Using a generalized linear model to control for confounding variables, including vaccination status, Omicron variant infection was associated with a CT-SS that was lower by 7.2 points compared to infection with Delta variant (β=-7.2, 95%CI: -9.9, -4.5; p <.001). Bronchial wall thickening was more common with Omicron than with the Delta variant (odds ratio [OR] 2.4, 95%CI: 1.01, 5.92, p=.04). Vaccination with a booster shot was associated with a protective effect on chest infection compared with the unvaccinated (CT-SS median 5 (IQR 0-11), CT-SS median 11 (IQR 7.5-14), respectively; p = .03). The Delta variant was associated with a higher odds ratio of severe disease (OR 4.6, 95%CI: 1.2, 26, p=.01) and critical care admission (OR 7.0, 95%CI: 1.5, 66, p=.004) than the Omicron variant.

          Conclusion

          The SARS-COV-2 Omicron variant was associated with fewer and less severe changes on chest CT compared with the Delta variant. Patients with Omicron had greater frequency of bronchial wall thickening but lower clinical severity and improved hospital outcomes than those with Delta.

          Abstract

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies

          The SARS-CoV-2 B.1.1.529 (Omicron) variant contains 15 mutations of the receptor-binding domain (RBD). How Omicron evades RBD-targeted neutralizing antibodies requires immediate investigation. Here we use high-throughput yeast display screening 1,2 to determine the profiles of RBD escaping mutations for 247 human anti-RBD neutralizing antibodies and show that the neutralizing antibodies can be classified by unsupervised clustering into six epitope groups (A–F)—a grouping that is highly concordant with knowledge-based structural classifications 3–5 . Various single mutations of Omicron can impair neutralizing antibodies of different epitope groups. Specifically, neutralizing antibodies in groups A–D, the epitopes of which overlap with the ACE2-binding motif, are largely escaped by K417N, G446S, E484A and Q493R. Antibodies in group E (for example, S309) 6 and group F (for example, CR3022) 7 , which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but a subset of neutralizing antibodies are still escaped by G339D, N440K and S371L. Furthermore, Omicron pseudovirus neutralization showed that neutralizing antibodies that sustained single mutations could also be escaped, owing to multiple synergetic mutations on their epitopes. In total, over 85% of the tested neutralizing antibodies were escaped by Omicron. With regard to neutralizing-antibody-based drugs, the neutralization potency of LY-CoV016, LY-CoV555, REGN10933, REGN10987, AZD1061, AZD8895 and BRII-196 was greatly undermined by Omicron, whereas VIR-7831 and DXP-604 still functioned at a reduced efficacy. Together, our data suggest that infection with Omicron would result in considerable humoral immune evasion, and that neutralizing antibodies targeting the sarbecovirus conserved region will remain most effective. Our results inform the development of antibody-based drugs and vaccines against Omicron and future variants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A minimal common outcome measure set for COVID-19 clinical research

            Summary Clinical research is necessary for an effective response to an emerging infectious disease outbreak. However, research efforts are often hastily organised and done using various research tools, with the result that pooling data across studies is challenging. In response to the needs of the rapidly evolving COVID-19 outbreak, the Clinical Characterisation and Management Working Group of the WHO Research and Development Blueprint programme, the International Forum for Acute Care Trialists, and the International Severe Acute Respiratory and Emerging Infections Consortium have developed a minimum set of common outcome measures for studies of COVID-19. This set includes three elements: a measure of viral burden (quantitative PCR or cycle threshold), a measure of patient survival (mortality at hospital discharge or at 60 days), and a measure of patient progression through the health-care system by use of the WHO Clinical Progression Scale, which reflects patient trajectory and resource use over the course of clinical illness. We urge investigators to include these key data elements in ongoing and future studies to expedite the pooling of data during this immediate threat, and to hone a tool for future needs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study

              Background The SARS-CoV-2 omicron variant of concern was identified in South Africa in November, 2021, and was associated with an increase in COVID-19 cases. We aimed to assess the clinical severity of infections with the omicron variant using S gene target failure (SGTF) on the Thermo Fisher Scientific TaqPath COVID-19 PCR test as a proxy. Methods We did data linkages for national, South African COVID-19 case data, SARS-CoV-2 laboratory test data, SARS-CoV-2 genome data, and COVID-19 hospital admissions data. For individuals diagnosed with COVID-19 via TaqPath PCR tests, infections were designated as either SGTF or non-SGTF. The delta variant was identified by genome sequencing. Using multivariable logistic regression models, we assessed disease severity and hospitalisations by comparing individuals with SGTF versus non-SGTF infections diagnosed between Oct 1 and Nov 30, 2021, and we further assessed disease severity by comparing SGTF-infected individuals diagnosed between Oct 1 and Nov 30, 2021, with delta variant-infected individuals diagnosed between April 1 and Nov 9, 2021. Findings From Oct 1 (week 39), 2021, to Dec 6 (week 49), 2021, 161 328 cases of COVID-19 were reported in South Africa. 38 282 people were diagnosed via TaqPath PCR tests and 29 721 SGTF infections and 1412 non-SGTF infections were identified. The proportion of SGTF infections increased from two (3·2%) of 63 in week 39 to 21 978 (97·9%) of 22 455 in week 48. After controlling for factors associated with hospitalisation, individuals with SGTF infections had significantly lower odds of admission than did those with non-SGTF infections (256 [2·4%] of 10 547 vs 121 [12·8%] of 948; adjusted odds ratio [aOR] 0·2, 95% CI 0·1–0·3). After controlling for factors associated with disease severity, the odds of severe disease were similar between hospitalised individuals with SGTF versus non-SGTF infections (42 [21%] of 204 vs 45 [40%] of 113; aOR 0·7, 95% CI 0·3–1·4). Compared with individuals with earlier delta variant infections, SGTF-infected individuals had a significantly lower odds of severe disease (496 [62·5%] of 793 vs 57 [23·4%] of 244; aOR 0·3, 95% CI 0·2–0·5), after controlling for factors associated with disease severity. Interpretation Our early analyses suggest a significantly reduced odds of hospitalisation among individuals with SGTF versus non-SGTF infections diagnosed during the same time period. SGTF-infected individuals had a significantly reduced odds of severe disease compared with individuals infected earlier with the delta variant. Some of this reduced severity is probably a result of previous immunity. Funding The South African Medical Research Council, the South African National Department of Health, US Centers for Disease Control and Prevention, the African Society of Laboratory Medicine, Africa Centers for Disease Control and Prevention, the Bill & Melinda Gates Foundation, the Wellcome Trust, and the Fleming Fund.
                Bookmark

                Author and article information

                Contributors
                Journal
                Radiology
                Radiology
                Radiology
                Radiology
                Radiological Society of North America
                0033-8419
                1527-1315
                21 June 2022
                21 June 2022
                : 220533
                Affiliations
                [1] 1Oxford University Hospitals NHS Foundation Trust
                [2] 2Weatherall Institute of Molecular Medicine, University of Oxford
                [3] 3Department of Oncology, University of Oxford
                [4] 4Big Data Institute, Nuffield Department of Population Health, University of Oxford
                [5] 5Department of Physiology, Anatomy & Genetics, University of Oxford
                Author notes
                To whom correspondence should be addressed Corresponding author: Maria T. Tsakok ( maria.tsakok@ 123456ouh.nhs.uk ) Oxford University Hospitals NHS Foundation Trust Headley Way OX3 9DU
                Author information
                https://orcid.org/0000-0003-4338-115X
                https://orcid.org/0000-0002-5165-9900
                https://orcid.org/0000-0002-8032-6718
                https://orcid.org/0000-0002-2666-656X
                https://orcid.org/0000-0002-1016-8638
                https://orcid.org/0000-0001-7186-2677
                https://orcid.org/0000-0001-5095-6367
                Article
                220533
                10.1148/radiol.220533
                9272784
                35727150
                cf705254-9ef8-40fc-945c-d08a9e04282e
                © 2022 by the Radiological Society of North America, Inc.

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                Categories
                Original Research
                Thoracic Imaging

                Comments

                Comment on this article