3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lipid droplets as metabolic determinants for stemness and chemoresistance in cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previously regarded as simple fat storage particles, new evidence suggests that lipid droplets (LDs) are dynamic and functional organelles involved in key cellular processes such as membrane biosynthesis, lipid metabolism, cell signalling and inflammation. Indeed, an increased LD content is one of the most apparent features resulting from lipid metabolism reprogramming necessary to support the basic functions of cancer cells. LDs have been associated to different cellular processes involved in cancer progression and aggressiveness, such as tumorigenicity, invasion and metastasis, as well as chemoresistance. Interestingly, all of these processes are controlled by a subpopulation of highly aggressive tumoral cells named cancer stem cells (CSCs), suggesting that LDs may be fundamental elements for stemness in cancer. Considering the key role of CSCs on chemoresistance and disease relapse, main factors of therapy failure, the design of novel therapeutic approaches targeting these cells may be the only chance for long-term survival in cancer patients. In this sense, their biology and functional properties render LDs excellent candidates for target discovery and design of combined therapeutic strategies. In this review, we summarise the current knowledge identifying LDs and CSCs as main contributors to cancer aggressiveness, metastasis and chemoresistance.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of pancreatic cancer stem cells.

          Emerging evidence has suggested that the capability of a tumor to grow and propagate is dependent on a small subset of cells within a tumor, termed cancer stem cells. Although data have been provided to support this theory in human blood, brain, and breast cancers, the identity of pancreatic cancer stem cells has not been determined. Using a xenograft model in which primary human pancreatic adenocarcinomas were grown in immunocompromised mice, we identified a highly tumorigenic subpopulation of pancreatic cancer cells expressing the cell surface markers CD44, CD24, and epithelial-specific antigen (ESA). Pancreatic cancer cells with the CD44(+)CD24(+)ESA(+) phenotype (0.2-0.8% of pancreatic cancer cells) had a 100-fold increased tumorigenic potential compared with nontumorigenic cancer cells, with 50% of animals injected with as few as 100 CD44(+)CD24(+)ESA(+) cells forming tumors that were histologically indistinguishable from the human tumors from which they originated. The enhanced ability of CD44(+)CD24(+)ESA(+) pancreatic cancer cells to form tumors was confirmed in an orthotopic pancreatic tail injection model. The CD44(+)CD24(+)ESA(+) pancreatic cancer cells showed the stem cell properties of self-renewal, the ability to produce differentiated progeny, and increased expression of the developmental signaling molecule sonic hedgehog. Identification of pancreatic cancer stem cells and further elucidation of the signaling pathways that regulate their growth and survival may provide novel therapeutic approaches to treat pancreatic cancer, which is notoriously resistant to standard chemotherapy and radiation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prospective identification of tumorigenic breast cancer cells.

            Breast cancer is the most common malignancy in United States women, accounting for >40,000 deaths each year. These breast tumors are comprised of phenotypically diverse populations of breast cancer cells. Using a model in which human breast cancer cells were grown in immunocompromised mice, we found that only a minority of breast cancer cells had the ability to form new tumors. We were able to distinguish the tumorigenic (tumor initiating) from the nontumorigenic cancer cells based on cell surface marker expression. We prospectively identified and isolated the tumorigenic cells as CD44(+)CD24(-/low)Lineage(-) in eight of nine patients. As few as 100 cells with this phenotype were able to form tumors in mice, whereas tens of thousands of cells with alternate phenotypes failed to form tumors. The tumorigenic subpopulation could be serially passaged: each time cells within this population generated new tumors containing additional CD44(+)CD24(-/low)Lineage(-) tumorigenic cells as well as the phenotypically diverse mixed populations of nontumorigenic cells present in the initial tumor. The ability to prospectively identify tumorigenic cancer cells will facilitate the elucidation of pathways that regulate their growth and survival. Furthermore, because these cells drive tumor development, strategies designed to target this population may lead to more effective therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamics and functions of lipid droplets

              Lipid droplets are storage organelles at the centre of lipid and energy homeostasis. They have a unique architecture consisting of a hydrophobic core of neutral lipids, which is enclosed by a phospholipid monolayer that is decorated by a specific set of proteins. Originating from the endoplasmic reticulum, lipid droplets can associate with most other cellular organelles through membrane contact sites. It is becoming apparent that these contacts between lipid droplets and other organelles are highly dynamic and coupled to the cycles of lipid droplet expansion and shrinkage. Importantly, lipid droplet biogenesis and degradation, as well as their interactions with other organelles, are tightly coupled to cellular metabolism and are critical to buffer the levels of toxic lipid species. Thus, lipid droplets facilitate the coordination and communication between different organelles and act as vital hubs of cellular metabolism.
                Bookmark

                Author and article information

                Contributors
                Journal
                World J Stem Cells
                WJSC
                World Journal of Stem Cells
                Baishideng Publishing Group Inc
                1948-0210
                26 September 2021
                26 September 2021
                : 13
                : 9
                : 1307-1317
                Affiliations
                Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza 50009, Spain
                Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza 50009, Spain
                Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza 50009, Spain
                Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza 50009, Spain
                Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza 50009, Spain. psancho@ 123456iisaragon.es
                Author notes

                Author contributions: Royo-García A, Espiau-Romera P, Courtois S and Parejo-Alonso B wrote the manuscript draft; Sancho P designed the study and wrote the final manuscript; all authors designed the figures and approved the final version of the manuscript.

                Supported by Miguel Servet Fellowship, No. CP16/00121; FIS (Fondo Investigaciones Sanitarias) grants, No. PI17/00082 and No. PI20/00942, all from Instituto de Salud Carlos III and Cofinanced by European Funds (FSE: “El FSE invierte en tu futuro” and FEDER: “Una manera de hacer Europa,” respectively); and the Worldwide Cancer Research Charity together with Fundación Científica Asociación Española contra el Cáncer (FCAECC) , No. 19-0250.

                Corresponding author: Patricia Sancho, PhD, Senior Researcher, Hospital Universitario Miguel Servet, IIS Aragón, Isabel la Católica 1-3, Zaragoza 50009, Spain. psancho@ 123456iisaragon.es

                Article
                jWJSC.v13.i9.pg1307
                10.4252/wjsc.v13.i9.1307
                8474722
                34630864
                cf6688bb-4e7a-403b-9b35-c75c9cf92e7f
                ©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

                This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/

                History
                : 12 March 2021
                : 13 May 2021
                : 18 August 2021
                Categories
                Minireviews

                lipids,lipid droplets,lipid metabolism,stemness,cancer stem cells,chemoresistance

                Comments

                Comment on this article