43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Involvement of Smac, p53, and caspase pathways in induction of apoptosis by gossypol in human retinoblastoma cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Retinoblastoma is a malignant tumor of the retina usually occurring in young children. To date, the conventional treatments for retinoblastoma have been enucleation, cryotherapy, external beam radiotherapy, or chemotherapy. Most of these treatments, however, have possible side effects, including blindness, infections, fever, gastrointestinal toxicity, and neurotoxicity. More effective treatments are therefore imperative. Gossypol has been reported as a potential inhibitor of cell proliferation in various types of cancers, such as prostate cancer, breast cancer, leukemia, and lung cancer. This study investigates the possible antiproliferative effect of gossypol on retinoblastoma.

          Methods

          Human retinoblastoma cells were cultured with various concentrations of gossypol and checked for cell viability with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nuclear condensation caused by cell apoptosis was detected by staining retinoblastoma cells with 4',6-diamidino-2-phenylindole (DAPI), counting those with condensed nuclei, and determining the percentage of apoptotic cells. In addition, the stages of apoptosis and phases in cell cycles were examined with flow cytometry. The possible signal transduction pathways involved were examined with a protein array assay and western blot analysis.

          Results

          After incubation, the cell survival rate was significantly lower after treatment with 5, 10, and 20 µM of gossypol. The maximum antisurvival effect of gossypol was observed at 20 µM, and the number of apoptotic cells was higher in the preparations cultured with 10 and 20 µM of gossypol. The results in flow cytometry indicated that at concentrations of 10 and 20 µM, gossypol increased the proportion of early- and late-apoptotic retinoblastoma cells and induced cell arrest of retinoblastoma cells at the same concentrations. This antiproliferative effect was later confirmed by upregulating the expression of death receptor 5 (DR5), caspase 8, caspase 9, caspase 3, cytochrome C, tumor protein 53 (p53), and second mitochondria-derived activator of caspases (Smac) in the signal transduction pathways.

          Conclusions

          We concluded that gossypol has an antiproliferative effect on retinoblastoma cells.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Apoptosis-based therapies for hematologic malignancies.

          Apoptosis is an intrinsic cell death program that plays critical roles in tissue homeostasis, especially in organs where high rates of daily cell production are offset by rapid cell turnover. The hematopoietic system provides numerous examples attesting to the importance of cell death mechanisms for achieving homeostatic control. Much has been learned about the mechanisms of apoptosis of lymphoid and hematopoietic cells since the seminal observation in 1980 that glucocorticoids induce DNA fragmentation and apoptosis of thymocytes and the demonstration in 1990 that depriving colony-stimulating factors from factor-dependent hematopoietic cells causes programmed cell death. From an understanding of the core components of the apoptosis machinery at the molecular and structural levels, many potential new therapies for leukemia and lymphoma are emerging. In this review, we introduce some of the drug discovery targets thus far identified within the core apoptotic machinery and describe some of the progress to date toward translating our growing knowledge about these targets into new therapies for cancer and leukemia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins.

            Among the most promising chemopreventive agents, certain natural polyphenols have recently received a great deal of attention because of their demonstrated inhibitory activity against tumorigenesis. In view of their anticancer properties, these compounds also hold great promise as potential chemotherapeutic agents. However, to translate these chemopreventive agents into chemotherapeutic compounds, their exact mechanisms of action must be delineated. By using a multidisciplinary approach guided by modern nuclear magnetic resonance spectroscopy techniques, fluorescence polarization displacement assays, and cell-based assays, we have begun to unravel the mechanisms of actions of certain polyphenols such as Gossypol (a compound from cotton seed extracts) and Purpurogallin (a natural compound extracted from Quercus sp. nutgall) and their derivatives. Our findings suggest that these natural products bind and antagonize the antiapoptotic effects of B-cell lymphocyte/leukemia-2 (Bcl-2) family proteins such as Bcl-x(L). Our in vitro and in vivo data not only open a window of opportunities for the development of novel cancer treatments with these compounds but also provide structural information that can be used for the design and development of novel and more effective analogues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Natural BH3 mimetic (-)-gossypol chemosensitizes human prostate cancer via Bcl-xL inhibition accompanied by increase of Puma and Noxa.

              Antiapoptotic members of the Bcl-2 family proteins are overexpressed in prostate cancer and are promising molecular targets for modulating chemoresistance of prostate cancer. (-)-Gossypol, a natural BH3 mimetic, is a small-molecule inhibitor of Bcl-2/Bcl-xL/Mcl-1 currently in phase II clinical trials as an adjuvant therapy for human prostate cancer. Our objective is to examine the chemosensitization potential of (-)-gossypol in prostate cancer and its molecular mechanisms of action. (-)-Gossypol inhibited cell growth and induced apoptosis through mitochondria pathway in human prostate cancer PC-3 cells and synergistically enhanced the antitumor activity of docetaxel both in vitro and in vivo in PC-3 xenograft model in nude mouse. (-)-Gossypol blocked the interactions of Bcl-xL with Bax or Bad in cancer cells by fluorescence resonance energy transfer assay and overcame the Bcl-xL protection of FL5.12 model cells on interleukin-3 withdrawal. Western blot and real-time PCR studies showed that a dose-dependent increase of the proapoptotic BH3-only proteins Noxa and Puma contributed to the cell death induced by (-)-gossypol and to the synergistic effects of (-)-gossypol and docetaxel. The small interfering RNA knockdown studies showed that Noxa and Puma are required in the (-)-gossypol-induced cell death. Taken together, these data suggest that (-)-gossypol exerts its antitumor activity through inhibition of the antiapoptotic protein Bcl-xL accompanied by an increase of proapoptotic Noxa and Puma. (-)-Gossypol significantly enhances the antitumor activity of chemotherapy in vitro and in vivo, representing a promising new regime for the treatment of human hormone-refractory prostate cancer with Bcl-2/Bcl-xL/Mcl-1 overexpression.
                Bookmark

                Author and article information

                Journal
                Mol Vis
                Mol. Vis
                MV
                Molecular Vision
                Molecular Vision
                1090-0535
                2012
                20 July 2012
                : 18
                : 2033-2042
                Affiliations
                [1 ]School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
                [2 ]Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan
                [3 ]Department of Neurosurgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
                [4 ]Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
                Author notes

                The first two authors contributed equally to the work

                Correspondence to: Yih-Jing Lee, School of Medicine, Fu-Jen Catholic University, 510 Chungcheng Road, Hsinchuang, New Taipei City 24205, Taiwan; Phone: +886-2-29053411; FAX: +886-2-29052096; email: yjlee@ 123456mail.fju.edu.tw
                Article
                214 2011MOLVIS0172
                3413436
                22876131
                cf59992c-4b4f-49dc-9392-7ba55e82d71f
                Copyright © 2012 Molecular Vision.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 April 2011
                : 17 July 2012
                Categories
                Research Article
                Custom metadata
                Export to XML
                Lee

                Vision sciences
                Vision sciences

                Comments

                Comment on this article