3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanoparticles in Clinical Trials: Analysis of Clinical Trials, FDA Approvals and Use for COVID-19 Vaccines

      , , , ,
      International Journal of Molecular Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanoparticles are heterologous small composites that are usually between 1 and 100 nanometers in size. They are applied in many areas of medicine with one of them being drug delivery. Nanoparticles have a number of advantages as drug carriers which include reduced toxic effects, increased bioavailability, and their ability to be modified for specific tissues or cells. Due to the exciting development of nanotechnology concomitant with advances in biotechnology and medicine, the number of clinical trials devoted to nanoparticles for drug delivery is growing rapidly. Some nanoparticles, lipid-based types, in particular, played a crucial role in the developing and manufacturing of the two COVID-19 vaccines—Pfizer and Moderna—that are now being widely used. In this analysis, we provide a quantitative survey of clinical trials using nanoparticles during the period from 2002 to 2021 as well as the recent FDA-approved drugs (since 2016). A total of 486 clinical trials were identified using the clinicaltrials.gov database. The prevailing types of nanoparticles were liposomes (44%) and protein-based formulations (26%) during this period. The most commonly investigated content of the nanoparticles were paclitaxel (23%), metals (11%), doxorubicin (9%), bupivacaine and various vaccines (both were 8%). Among the FDA-approved nanoparticle drugs, polymeric (29%), liposomal (22%) and lipid-based (21%) drugs were the most common. In this analysis, we also discuss the differential development of the diverse groups of nanoparticles and their content, as well as the underlying factors behind the trends.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date

          In this review we provide an up to date snapshot of nanomedicines either currently approved by the US FDA, or in the FDA clinical trials process. We define nanomedicines as therapeutic or imaging agents which comprise a nanoparticle in order to control the biodistribution, enhance the efficacy, or otherwise reduce toxicity of a drug or biologic. We identified 51 FDA-approved nanomedicines that met this definition and 77 products in clinical trials, with ~40% of trials listed in clinicaltrials.gov started in 2014 or 2015. While FDA approved materials are heavily weighted to polymeric, liposomal, and nanocrystal formulations, there is a trend towards the development of more complex materials comprising micelles, protein-based NPs, and also the emergence of a variety of inorganic and metallic particles in clinical trials. We then provide an overview of the different material categories represented in our search, highlighting nanomedicines that have either been recently approved, or are already in clinical trials. We conclude with some comments on future perspectives for nanomedicines, which we expect to include more actively-targeted materials, multi-functional materials ("theranostics") and more complicated materials that blur the boundaries of traditional material categories. A key challenge for researchers, industry, and regulators is how to classify new materials and what additional testing (e.g. safety and toxicity) is required before products become available.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Nanoparticles in the clinic: An update

            Abstract Nanoparticle drug delivery systems have been used in the clinic since the early 1990's. Since that time, the field of nanomedicine has evolved alongside growing technological needs to improve the delivery of various therapeutics. Over these past decades, newer generations of nanoparticles have emerged that are capable of performing additional delivery functions that can enable treatment via new therapeutic modalities. In the current clinical landscape, many of these new generation nanoparticles have reached clinical trials and have been approved for various indications. In the first issue of Bioengineering & Translational Medicine in 2016, we reviewed the history, current clinical landscape, and clinical challenges of nanoparticle delivery systems. Here, we provide a 3 year update on the current clinical landscape of nanoparticle drug delivery systems and highlight newly approved nanomedicines, provide a status update on previous clinical trials, and highlight new technologies that have recently entered the clinic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Smart cancer nanomedicine

              Nanomedicines are extensively employed in cancer therapy. We here propose four strategic directions to improve nanomedicine translation and exploitation. (1) Patient stratification has become common practice in oncology drug development. Accordingly, probes and protocols for patient stratification are urgently needed in cancer nanomedicine, to identify individuals suitable for inclusion in clinical trials. (2) Rational drug selection is crucial for clinical and commercial success. Opportunistic choices based on drug availability should be replaced by investments in modular (pro)drug and nanocarrier design. (3) Combination therapies are the mainstay of clinical cancer care. Nanomedicines synergize with pharmacological and physical co-treatments, and should be increasingly integrated in multimodal combination therapy regimens. (4) Immunotherapy is revolutionizing the treatment of cancer. Nanomedicines can modulate the behaviour of myeloid and lymphoid cells, thereby empowering anticancer immunity and immunotherapy efficacy. Alone and especially together, these four directions will fuel and foster the development of successful cancer nanomedicine therapies.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                January 2023
                January 02 2023
                : 24
                : 1
                : 787
                Article
                10.3390/ijms24010787
                9821409
                36614230
                cf428f68-b523-4d52-a76f-9af4745e8d32
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article