9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Infectious Threats, the Intestinal Barrier, and Its Trojan Horse: Dysbiosis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ecosystem of the gut microbiota consists of diverse intestinal species with multiple metabolic and immunologic activities and it is closely connected with the intestinal epithelia and mucosal immune response, with which it builds a complex barrier against intestinal pathogenic bacteria. The microbiota ensures the integrity of the gut barrier through multiple mechanisms, either by releasing antibacterial molecules (bacteriocins) and anti-inflammatory short-chain fatty acids or by activating essential cell receptors for the immune response. Experimental studies have confirmed the role of the intestinal microbiota in the epigenetic modulation of the gut barrier through posttranslational histone modifications and regulatory mechanisms induced by epithelial miRNA in the epithelial lumen. Any quantitative or functional changes of the intestinal microbiota, referred to as dysbiosis, alter the immune response, decrease epithelial permeability and destabilize intestinal homeostasis. Consequently, the overgrowth of pathobionts ( Staphylococcus, Pseudomonas, and Escherichia coli) favors intestinal translocations with Gram negative bacteria or their endotoxins and could trigger sepsis, septic shock, secondary peritonitis, or various intestinal infections. Intestinal infections also induce epithelial lesions and perpetuate the risk of bacterial translocation and dysbiosis through epithelial ischemia and pro-inflammatory cytokines. Furthermore, the decline of protective anaerobic bacteria ( Bifidobacterium and Lactobacillus) and inadequate release of immune modulators (such as butyrate) affects the release of antimicrobial peptides, de-represses microbial virulence factors and alters the innate immune response. As a result, intestinal germs modulate liver pathology and represent a common etiology of infections in HIV immunosuppressed patients. Antibiotic and antiretroviral treatments also promote intestinal dysbiosis, followed by the selection of resistant germs which could later become a source of infections. The current article addresses the strong correlations between the intestinal barrier and the microbiota and discusses the role of dysbiosis in destabilizing the intestinal barrier and promoting infectious diseases.

          Related collections

          Most cited references216

          • Record: found
          • Abstract: found
          • Article: not found

          A microbial symbiosis factor prevents intestinal inflammatory disease.

          Humans are colonized by multitudes of commensal organisms representing members of five of the six kingdoms of life; however, our gastrointestinal tract provides residence to both beneficial and potentially pathogenic microorganisms. Imbalances in the composition of the bacterial microbiota, known as dysbiosis, are postulated to be a major factor in human disorders such as inflammatory bowel disease. We report here that the prominent human symbiont Bacteroides fragilis protects animals from experimental colitis induced by Helicobacter hepaticus, a commensal bacterium with pathogenic potential. This beneficial activity requires a single microbial molecule (polysaccharide A, PSA). In animals harbouring B. fragilis not expressing PSA, H. hepaticus colonization leads to disease and pro-inflammatory cytokine production in colonic tissues. Purified PSA administered to animals is required to suppress pro-inflammatory interleukin-17 production by intestinal immune cells and also inhibits in vitro reactions in cell cultures. Furthermore, PSA protects from inflammatory disease through a functional requirement for interleukin-10-producing CD4+ T cells. These results show that molecules of the bacterial microbiota can mediate the critical balance between health and disease. Harnessing the immunomodulatory capacity of symbiosis factors such as PSA might potentially provide therapeutics for human inflammatory disorders on the basis of entirely novel biological principles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon.

            The microbiome is being characterized by large-scale sequencing efforts, yet it is not known whether it regulates host metabolism in a general versus tissue-specific manner or which bacterial metabolites are important. Here, we demonstrate that microbiota have a strong effect on energy homeostasis in the colon compared to other tissues. This tissue specificity is due to colonocytes utilizing bacterially produced butyrate as their primary energy source. Colonocytes from germfree mice are in an energy-deprived state and exhibit decreased expression of enzymes that catalyze key steps in intermediary metabolism including the TCA cycle. Consequently, there is a marked decrease in NADH/NAD(+), oxidative phosphorylation, and ATP levels, which results in AMPK activation, p27(kip1) phosphorylation, and autophagy. When butyrate is added to germfree colonocytes, it rescues their deficit in mitochondrial respiration and prevents them from undergoing autophagy. The mechanism is due to butyrate acting as an energy source rather than as an HDAC inhibitor. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota.

              Mucosal surfaces constantly encounter microbes. Toll-like receptors (TLRs) mediate recognition of microbial patterns to eliminate pathogens. By contrast, we demonstrate that the prominent gut commensal Bacteroides fragilis activates the TLR pathway to establish host-microbial symbiosis. TLR2 on CD4(+) T cells is required for B. fragilis colonization of a unique mucosal niche in mice during homeostasis. A symbiosis factor (PSA, polysaccharide A) of B. fragilis signals through TLR2 directly on Foxp3(+) regulatory T cells to promote immunologic tolerance. B. fragilis lacking PSA is unable to restrain T helper 17 cell responses and is defective in niche-specific mucosal colonization. Therefore, commensal bacteria exploit the TLR pathway to actively suppress immunity. We propose that the immune system can discriminate between pathogens and the microbiota through recognition of symbiotic bacterial molecules in a process that engenders commensal colonization.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                07 August 2019
                2019
                : 10
                : 1676
                Affiliations
                [1] 1Infectious Diseases Department, “Carol Davila” University of Medicine and Pharmacy , Bucharest, Romania
                [2] 2National Institute of Infectious Diseases “Prof. Dr. Matei Balş” , Bucharest, Romania
                Author notes

                Edited by: Sudhanshu Shekhar, University of Oslo, Norway

                Reviewed by: Elisabeth Billard, Université Clermont Auvergne, France; Eliana Mariño, Monash University, Australia

                *Correspondence: Diana Gabriela Iacob, dianagiacob@ 123456gmail.com

                This article was submitted to Microbial Immunology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.01676
                6692454
                31447793
                cf34b024-87df-4b7c-a30b-b2a5c2d5a046
                Copyright © 2019 Iacob and Iacob.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 January 2019
                : 08 July 2019
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 287, Pages: 17, Words: 0
                Categories
                Microbiology
                Mini Review

                Microbiology & Virology
                dysbiosis,intestinal microbiota,epigenetic modulation,short chain fatty acids,immunity,sepsis,hiv infection,liver infections

                Comments

                Comment on this article