5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effectiveness of Efflux Pump Inhibitors as Biofilm Disruptors and Resistance Breakers in Gram-Negative (ESKAPEE) Bacteria

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antibiotic resistance represents a significant threat to the modern healthcare provision. The ESKAPEE pathogens ( Enterococcus faecium., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli), in particular, have proven to be especially challenging to treat, due to their intrinsic and acquired ability to rapidly develop resistance mechanisms in response to environmental threats. The development of biofilm has been characterised as an essential contributing factor towards antimicrobial-resistance and tolerance. Several studies have implicated the involvement of efflux pumps in antibiotic resistance, both directly, via drug extrusion and indirectly, through the formation of biofilm. As a result, the underlying mechanism of these pumps has attracted considerable interest due to the potential of targeting these protein structures and developing novel adjunct therapies. Subsequent investigations have revealed the ability of efflux pump-inhibitors (EPIs) to block drug-extrusion and disrupt biofilm formation, thereby, potentiating antibiotics and reversing resistance of pathogen towards them. This review will discuss the potential of EPIs as a possible solution to antimicrobial resistance, examining different challenges to the design of these compounds, with an emphasis on Gram-negative ESKAPEE pathogens.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Persister cells, dormancy and infectious disease.

          Kim Lewis (2007)
          Several well-recognized puzzles in microbiology have remained unsolved for decades. These include latent bacterial infections, unculturable microorganisms, persister cells and biofilm multidrug tolerance. Accumulating evidence suggests that these seemingly disparate phenomena result from the ability of bacteria to enter into a dormant (non-dividing) state. The molecular mechanisms that underlie the formation of dormant persister cells are now being unravelled and are the focus of this Review.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of bacterial biofilms in chronic infections.

            Acute infections caused by pathogenic bacteria have been studied extensively for well over 100 years. These infections killed millions of people in previous centuries, but they have been combated effectively by the development of modern vaccines, antibiotics and infection control measures. Most research into bacterial pathogenesis has focused on acute infections, but these diseases have now been supplemented by a new category of chronic infections caused by bacteria growing in slime-enclosed aggregates known as biofilms. Biofilm infections, such as pneumonia in cystic fibrosis patients, chronic wounds, chronic otitis media and implant- and catheter-associated infections, affect millions of people in the developed world each year and many deaths occur as a consequence. In general, bacteria have two life forms during growth and proliferation. In one form, the bacteria exist as single, independent cells (planktonic) whereas in the other form, bacteria are organized into sessile aggregates. The latter form is commonly referred to as the biofilm growth phenotype. Acute infections are assumed to involve planktonic bacteria, which are generally treatable with antibiotics, although successful treatment depends on accurate and fast diagnosis. However, in cases where the bacteria succeed in forming a biofilm within the human host, the infection often turns out to be untreatable and will develop into a chronic state. The important hallmarks of chronic biofilm-based infections are extreme resistance to antibiotics and many other conventional antimicrobial agents, and an extreme capacity for evading the host defences. In this thesis, I will assemble the current knowledge on biofilms with an emphasis on chronic infections, guidelines for diagnosis and treatment of these infections, before relating this to my previous research into the area of biofilms. I will present evidence to support a view that the biofilm lifestyle dominates chronic bacterial infections, where bacterial aggregation is the default mode, and that subsequent biofilm development progresses by adaptation to nutritional and environmental conditions. I will make a series of correlations to highlight the most important aspects of biofilms from my perspective, and to determine what can be deduced from the past decades of biofilm research. I will try to bridge in vitro and in vivo research and propose methods for studying biofilms based on this knowledge. I will compare how bacterial biofilms exist in stable ecological habitats and opportunistically in unstable ecological habitats, such as infections. Bacteria have a similar lifestyle (the biofilm) in both habitats, but the fight for survival and supremacy is different. On the basis of this comparison, I will hypothesize how chronic biofilm infections are initiated and how bacteria live together in these infections. Finally, I will discuss different aspects of biofilm infection diagnosis. Hopefully, this survey of current knowledge and my proposed guidelines will provide the basis and inspiration for more research, improved diagnostics, and treatments for well-known biofilm infections and any that may be identified in the future. © 2013 APMIS Published by Blackwell Publishing Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria.

              Antibiotic resistance mechanisms reported in Gram-negative bacteria are causing a worldwide health problem. The continuous dissemination of 'multidrug-resistant' (MDR) bacteria drastically reduces the efficacy of our antibiotic 'arsenal' and consequently increases the frequency of therapeutic failure. In MDR bacteria, the overexpression of efflux pumps that expel structurally unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data have indicated an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological levels, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may pave the way towards the rational development of an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Antibiotics (Basel)
                Antibiotics (Basel)
                antibiotics
                Antibiotics
                MDPI
                2079-6382
                19 November 2019
                December 2019
                : 8
                : 4
                : 229
                Affiliations
                [1 ]Institute of Pharmaceutical Science, King’s College London, London, SE1 9NH, UK; akif.reza@ 123456kcl.ac.uk
                [2 ]National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK; mark.sutton@ 123456phe.gov.uk
                Author notes
                [* ]Correspondence: k.miraz.rahman@ 123456kcl.ac.uk ; Tel.: +44-(0)207-848-1891
                Author information
                https://orcid.org/0000-0002-2288-0446
                https://orcid.org/0000-0001-8566-8648
                Article
                antibiotics-08-00229
                10.3390/antibiotics8040229
                6963839
                31752382
                cf316afc-0b5b-4cca-a3e8-52125951b790
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 21 October 2019
                : 12 November 2019
                Categories
                Review

                antimicrobial resistance,biofilm,efflux pump inhibitors,antibiotic potentiation,eskapee pathogens,gram-negative bacteria

                Comments

                Comment on this article