1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Carbon dots from eco-friendly precursors for optical sensing application: an up-to-date review

      , ,
      Chemical Papers
      Springer Science and Business Media LLC

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          Carbon dots (CDs) are zero-dimensional quasi-spherical nanoparticles endowed with excellent advantages including good luminescence features, photostability, low cytotoxicity, remarkable aqueous solubility, favourable biocompatibility, low risk to environment and great flexibility in surface modification. Fluorescent CDs that can selectively respond to specific inorganic/organic target molecules in environmental and biological samples are of prime significance amongst the new generation intelligent sensors due to the critical involvement of different ions/molecular species in not only human health, but also in environment processes. In this context, preparation of CDs from bioprecursors has immense significance due to the involvement of green principles, inexpensive, clean, nontoxic, easily accessible, renewable and large-scale production can be realized. This article aims at exploring different types of green raw materials including plant biomass, animal products, food items and waste materials as carbon sources for the synthesis of both undoped and doped CDs. The emphasis is given on different synthetic approaches adopted for improving the quantum yield without any chemical modification, the characterization techniques, mechanistic origin of photoluminescence and fluorescence response mechanisms involved in the sensing action towards various analytes. The significant benefits and limitations of CDs obtained from eco-friendly precursors through green approaches are summarized. Various challenges and the future prospects of these carbonaceous nanomaterials as sensors are also discussed.

          Graphical abstract

          Related collections

          Most cited references149

          • Record: found
          • Abstract: found
          • Article: not found

          Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments.

          Arc-synthesized single-walled carbon nanotubes have been purified through preparative electrophoresis in agarose gel and glass bead matrixes. Two major impurities were isolated: fluorescent carbon and short tubular carbon. Analysis of these two classes of impurities was done. The methods described may be readily extended to the separation of other water-soluble nanoparticles. The separated fluorescent carbon and short tubule carbon species promise to be interesting nanomaterials in their own right.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Luminescent Carbon Nanodots: Emergent Nanolights

            Similar to its popular older cousins the fullerene, the carbon nanotube, and graphene, the latest form of nanocarbon, the carbon nanodot, is inspiring intensive research efforts in its own right. These surface-passivated carbonaceous quantum dots, so-called C-dots, combine several favorable attributes of traditional semiconductor-based quantum dots (namely, size- and wavelength-dependent luminescence emission, resistance to photobleaching, ease of bioconjugation) without incurring the burden of intrinsic toxicity or elemental scarcity and without the need for stringent, intricate, tedious, costly, or inefficient preparation steps. C-dots can be produced inexpensively and on a large scale (frequently using a one-step pathway and potentially from biomass waste-derived sources) by many approaches, ranging from simple candle burning to in situ dehydration reactions to laser ablation methods. In this Review, we summarize recent advances in the synthesis and characterization of C-dots. We also speculate on their future and discuss potential developments for their use in energy conversion/storage, bioimaging, drug delivery, sensors, diagnostics, and composites.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Carbon quantum dots: synthesis, properties and applications

                Bookmark

                Author and article information

                Contributors
                Journal
                Chemical Papers
                Chem. Pap.
                Springer Science and Business Media LLC
                0366-6352
                2585-7290
                October 2022
                July 17 2022
                October 2022
                : 76
                : 10
                : 6097-6127
                Article
                10.1007/s11696-022-02353-3
                cf1b0341-7c37-467a-86e8-d1260b70a09e
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article