Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Shells and Range of Interactions in Ionic Liquids as a Function of Temperature

      rapid-communication

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Room-temperature ionic liquids (RTILs) represent a versatile class of chemical systems composed entirely of oppositely charged species whose bulk properties can be fine-tuned by adjusting molecular structures and, consequently, intermolecular interactions. Understanding the intricate dynamics between ionic species can aid in the rational design of RTILs for specific applications in a range of fields, including catalysis and electrochemistry. Here, we investigate the temperature dependence of intermolecular interactions through magnetization transfer by means of 1H– 19F heteronuclear Overhauser effect spectroscopy (HOESY) for two ionic liquids, namely, [BMIM][BF 4] and [BMIM][PF 6]. We find that the cross-relaxation rates vary significantly over a rather small temperature range, even changing sign. Molecular dynamics (MD) simulations on neat RTIL systems replicate this behavior well and further show that the dynamic properties rather than coordination changes of RTILs account for the observed temperature behavior. Furthermore, the investigation of different coordination shells highlights the change of interaction range with temperature even to the point where inner and outer coordination shells could be in distinct motional regimes with cross-relaxation rates of opposite sign. Since temperature changes lead primarily to dynamic changes rather than structural ones, these findings underscore the versatility and high thermal stability of ionic liquids.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PACKMOL: a package for building initial configurations for molecular dynamics simulations.

            Adequate initial configurations for molecular dynamics simulations consist of arrangements of molecules distributed in space in such a way to approximately represent the system's overall structure. In order that the simulations are not disrupted by large van der Waals repulsive interactions, atoms from different molecules must keep safe pairwise distances. Obtaining such a molecular arrangement can be considered a packing problem: Each type molecule must satisfy spatial constraints related to the geometry of the system, and the distance between atoms of different molecules must be greater than some specified tolerance. We have developed a code able to pack millions of atoms, grouped in arbitrarily complex molecules, inside a variety of three-dimensional regions. The regions may be intersections of spheres, ellipses, cylinders, planes, or boxes. The user must provide only the structure of one molecule of each type and the geometrical constraints that each type of molecule must satisfy. Building complex mixtures, interfaces, solvating biomolecules in water, other solvents, or mixtures of solvents, is straightforward. In addition, different atoms belonging to the same molecule may also be restricted to different spatial regions, in such a way that more ordered molecular arrangements can be built, as micelles, lipid double-layers, etc. The packing time for state-of-the-art molecular dynamics systems varies from a few seconds to a few minutes in a personal computer. The input files are simple and currently compatible with PDB, Tinker, Molden, or Moldy coordinate files. The package is distributed as free software and can be downloaded from http://www.ime.unicamp.br/~martinez/packmol/. Copyright 2009 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MDAnalysis: a toolkit for the analysis of molecular dynamics simulations.

              MDAnalysis is an object-oriented library for structural and temporal analysis of molecular dynamics (MD) simulation trajectories and individual protein structures. It is written in the Python language with some performance-critical code in C. It uses the powerful NumPy package to expose trajectory data as fast and efficient NumPy arrays. It has been tested on systems of millions of particles. Many common file formats of simulation packages including CHARMM, Gromacs, Amber, and NAMD and the Protein Data Bank format can be read and written. Atoms can be selected with a syntax similar to CHARMM's powerful selection commands. MDAnalysis enables both novice and experienced programmers to rapidly write their own analytical tools and access data stored in trajectories in an easily accessible manner that facilitates interactive explorative analysis. MDAnalysis has been tested on and works for most Unix-based platforms such as Linux and Mac OS X. It is freely available under the GNU General Public License from http://mdanalysis.googlecode.com. Copyright © 2011 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                J Phys Chem Lett
                J Phys Chem Lett
                jz
                jpclcd
                The Journal of Physical Chemistry Letters
                American Chemical Society
                1948-7185
                20 February 2025
                27 February 2025
                : 16
                : 8
                : 2120-2127
                Affiliations
                Department of Chemistry, New York University , New York, New York 10003, United States
                Author notes
                Author information
                https://orcid.org/0009-0000-1328-0716
                https://orcid.org/0000-0003-3845-0974
                https://orcid.org/0009-0003-9955-3616
                https://orcid.org/0000-0003-1521-9219
                Article
                10.1021/acs.jpclett.4c03576
                11873955
                39976539
                cf083806-9d7c-4233-bd48-f37256f73a4a
                © 2025 The Authors. Published by American Chemical Society

                Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 14 December 2024
                : 13 February 2025
                : 10 February 2025
                Funding
                Funded by: National Science Foundation, doi 10.13039/100000001;
                Award ID: CHE 2108205
                Funded by: Romanian-U.S. Fulbright Commission, doi NA;
                Award ID: NA
                Funded by: American Chemical Society Petroleum Research Fund, doi 10.13039/100006770;
                Award ID: 68117-ND6
                Categories
                Letter
                Custom metadata
                jz4c03576
                jz4c03576

                Physical chemistry
                Physical chemistry

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content158

                Most referenced authors818