22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      From signalling pathways to targeted therapies: unravelling glioblastoma’s secrets and harnessing two decades of progress

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.

          Related collections

          Most cited references444

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma

            Glioblastoma, the most common primary brain tumor in adults, is usually rapidly fatal. The current standard of care for newly diagnosed glioblastoma is surgical resection to the extent feasible, followed by adjuvant radiotherapy. In this trial we compared radiotherapy alone with radiotherapy plus temozolomide, given concomitantly with and after radiotherapy, in terms of efficacy and safety. Patients with newly diagnosed, histologically confirmed glioblastoma were randomly assigned to receive radiotherapy alone (fractionated focal irradiation in daily fractions of 2 Gy given 5 days per week for 6 weeks, for a total of 60 Gy) or radiotherapy plus continuous daily temozolomide (75 mg per square meter of body-surface area per day, 7 days per week from the first to the last day of radiotherapy), followed by six cycles of adjuvant temozolomide (150 to 200 mg per square meter for 5 days during each 28-day cycle). The primary end point was overall survival. A total of 573 patients from 85 centers underwent randomization. The median age was 56 years, and 84 percent of patients had undergone debulking surgery. At a median follow-up of 28 months, the median survival was 14.6 months with radiotherapy plus temozolomide and 12.1 months with radiotherapy alone. The unadjusted hazard ratio for death in the radiotherapy-plus-temozolomide group was 0.63 (95 percent confidence interval, 0.52 to 0.75; P<0.001 by the log-rank test). The two-year survival rate was 26.5 percent with radiotherapy plus temozolomide and 10.4 percent with radiotherapy alone. Concomitant treatment with radiotherapy plus temozolomide resulted in grade 3 or 4 hematologic toxic effects in 7 percent of patients. The addition of temozolomide to radiotherapy for newly diagnosed glioblastoma resulted in a clinically meaningful and statistically significant survival benefit with minimal additional toxicity. Copyright 2005 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The 2021 WHO Classification of Tumors of the Central Nervous System: a summary

              The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, is the sixth version of the international standard for the classification of brain and spinal cord tumors. Building on the 2016 updated fourth edition and the work of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy, the 2021 fifth edition introduces major changes that advance the role of molecular diagnostics in CNS tumor classification. At the same time, it remains wedded to other established approaches to tumor diagnosis such as histology and immunohistochemistry. In doing so, the fifth edition establishes some different approaches to both CNS tumor nomenclature and grading and it emphasizes the importance of integrated diagnoses and layered reports. New tumor types and subtypes are introduced, some based on novel diagnostic technologies such as DNA methylome profiling. The present review summarizes the major general changes in the 2021 fifth edition classification and the specific changes in each taxonomic category. It is hoped that this summary provides an overview to facilitate more in-depth exploration of the entire fifth edition of the WHO Classification of Tumors of the Central Nervous System.
                Bookmark

                Author and article information

                Contributors
                brittany.dewdney@telethonkids.org.au
                Journal
                Signal Transduct Target Ther
                Signal Transduct Target Ther
                Signal Transduction and Targeted Therapy
                Nature Publishing Group UK (London )
                2095-9907
                2059-3635
                20 October 2023
                20 October 2023
                2023
                : 8
                : 400
                Affiliations
                [1 ]Cancer Centre, Telethon Kids Institute, ( https://ror.org/01dbmzx78) Nedlands, WA 6009 Australia
                [2 ]Centre For Child Health Research, University of Western Australia, ( https://ror.org/047272k79) Perth, WA 6009 Australia
                [3 ]Immunology Division, The Walter and Eliza Hall Institute of Medical Research, ( https://ror.org/01b6kha49) Melbourne, 3052 Australia
                [4 ]Department of Medical Biology, University of Melbourne, ( https://ror.org/01ej9dk98) Melbourne, 3010 Australia
                [5 ]Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, ( https://ror.org/01b6kha49) Melbourne, 3052 Australia
                [6 ]School of Biomedical Sciences, University of New South Wales, ( https://ror.org/03r8z3t63) Sydney, 2052 Australia
                Author information
                http://orcid.org/0000-0002-6362-369X
                http://orcid.org/0000-0001-6564-2715
                http://orcid.org/0000-0002-0377-9318
                http://orcid.org/0000-0003-3554-2769
                Article
                1637
                10.1038/s41392-023-01637-8
                10587102
                37857607
                cef1946e-53d6-43bf-8d84-adabcb875749
                © West China Hospital, Sichuan University 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 June 2022
                : 29 August 2023
                : 7 September 2023
                Funding
                Funded by: FundRef https://doi.org/10.13039/100008018, Victorian Cancer Agency (VCA);
                Award ID: MCRF22003
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100000925, Department of Health | National Health and Medical Research Council (NHMRC);
                Award ID: GNT1184421
                Award Recipient :
                Funded by: Prof Johns is also supported by the Perth Children’s Hospital Foundation (9896) and a WA Child Research Fund grant
                Funded by: FundRef https://doi.org/10.13039/501100001170, Cancer Council Western Australia;
                Funded by: The Pirate Ship Foundation, Brainchild Fellowship
                Categories
                Review Article
                Custom metadata
                © West China Hospital, Sichuan University 2023

                cns cancer,tumour heterogeneity,drug development
                cns cancer, tumour heterogeneity, drug development

                Comments

                Comment on this article