0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biological synthesis of bimetallic hybrid nanocomposite: A remarkable photocatalyst, adsorption/desorption and antimicrobial agent

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity †

          Since discovery of the first antibiotic drug, penicillin, in 1928, a variety of antibiotic and antimicrobial agents have been developed and used for both human therapy and industrial applications. However, excess and uncontrolled use of antibiotic agents has caused a significant growth in the number of drug resistant pathogens. Novel therapeutic approaches replacing the inefficient antibiotics are in high demand to overcome increasing microbial multidrug resistance. In the recent years, ongoing research has focused on development of nano-scale objects as efficient antimicrobial therapies. Among the various nanoparticles, silver nanoparticles have gained much attention due to their unique antimicrobial properties. However, concerns about the synthesis of these materials such as use of precursor chemicals and toxic solvents, and generation of toxic byproducts have led to a new alternative approach, green synthesis. This eco-friendly technique incorporates use of biological agents, plants or microbial agents as reducing and capping agents. Silver nanoparticles synthesized by green chemistry offer a novel and potential alternative to chemically synthesized nanoparticles. In this review, we discuss the recent advances in green synthesis of silver nanoparticles, their application as antimicrobial agents and mechanism of antimicrobial mode of action.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: A review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Antimicrobial Polymers with Metal Nanoparticles

              Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Applied Surface Science Advances
                Applied Surface Science Advances
                Elsevier BV
                26665239
                October 2023
                October 2023
                : 17
                : 100446
                Article
                10.1016/j.apsadv.2023.100446
                cee1ae5e-cc1c-4dcb-b6c6-17eedfa03fb1
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article