10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neutrophils are Essential in Short Hairpin RNA of Indoleamine 2,3- Dioxygenase Mediated-antitumor Efficiency

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Indoleamine 2,3-dioxygenase (IDO) is a rate limiting enzyme in tryptophan-degrading pathways and IDO activity results in immune suppression. Targeting IDO is a strategy of cancer immunotherapies. Our previous studies demonstrate that delivery of short hairpin against IDO (IDO shRNA) suppresses tumor growth and increases neutrophils infiltration into tumor. Neutrophils reveal antitumorigenic “N1” or protumorigenic “N2” phenotype in tumor microenvironment. However, the function of IDO shRNA-induced neutrophils is not clear. The LLC1 lung cancer model was used to investigate the role of these neutrophils. Intramuscular injection of IDO shRNA or IDO inhibitor treatment delayed tumor growth and both treatments increased neutrophil infiltration in tumor. Enriched tumor-infiltrating neutrophils expressed both high level of tumor necrosis factor-α and tumor necrosis factor-β (N1 and N2 associated molecules, respectively). In addition, IDO shRNA treatment induced interferon-γ and tryptophan transfer RNA expression in splenocytes. Systematic depletion of neutrophils abolished the IDO shRNA-induced therapeutic effect but did not affect the effect of IDO inhibitor. The levels of interferon-γ and tumor necrosis factor-α were suppressed in IDO shRNA treatment splenocytes after neutrophils depletion. In conclusion, these tumor-infiltrating neutrophils show antitumorigenic phenotype in spleen after IDO shRNA treatment in a murine lung cancer model.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase.

          Indoleamine 2,3 dioxygenase (IDO) catabolizes the amino acid tryptophan. IDO-expressing immunoregulatory dendritic cells (DCs) have been implicated in settings including tumors, autoimmunity, and transplant tolerance. However, the downstream molecular mechanisms by which IDO functions to regulate T cell responses remain unknown. We now show that IDO-expressing plasmacytoid DCs activate the GCN2 kinase pathway in responding T cells. GCN2 is a stress-response kinase that is activated by elevations in uncharged tRNA. T cells with a targeted disruption of GCN2 were not susceptible to IDO-mediated suppression of proliferation in vitro. In vivo, proliferation of GCN2-knockout T cells was not inhibited by IDO-expressing DCs from tumor-draining lymph nodes. IDO induced profound anergy in responding wild-type T cells, but GCN2-knockout cells were refractory to IDO-induced anergy. We hypothesize that GCN2 acts as a molecular sensor in T cells, allowing them to detect and respond to conditions created by IDO.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Origins of tumor-associated macrophages and neutrophils.

            Tumor-associated macrophages (TAMs) and tumor-associated neutrophils (TANs) can control cancer growth and exist in almost all solid neoplasms. The cells are known to descend from immature monocytic and granulocytic cells, respectively, which are produced in the bone marrow. However, the spleen is also a recently identified reservoir of monocytes, which can play a significant role in the inflammatory response that follows acute injury. Here, we evaluated the role of the splenic reservoir in a genetic mouse model of lung adenocarcinoma driven by activation of oncogenic Kras and inactivation of p53. We found that high numbers of TAM and TAN precursors physically relocated from the spleen to the tumor stroma, and that recruitment of tumor-promoting spleen-derived TAMs required signaling of the chemokine receptor CCR2. Also, removal of the spleen, either before or after tumor initiation, reduced TAM and TAN responses significantly and delayed tumor growth. The mechanism by which the spleen was able to maintain its reservoir capacity throughout tumor progression involved, in part, local accumulation in the splenic red pulp of typically rare extramedullary hematopoietic stem and progenitor cells, notably granulocyte and macrophage progenitors, which produced CD11b(+) Ly-6C(hi) monocytic and CD11b(+) Ly-6G(hi) granulocytic cells locally. Splenic granulocyte and macrophage progenitors and their descendants were likewise identified in clinical specimens. The present study sheds light on the origins of TAMs and TANs, and positions the spleen as an important extramedullary site, which can continuously supply growing tumors with these cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A dual program for translation regulation in cellular proliferation and differentiation.

              A dichotomous choice for metazoan cells is between proliferation and differentiation. Measuring tRNA pools in various cell types, we found two distinct subsets, one that is induced in proliferating cells, and repressed otherwise, and another with the opposite signature. Correspondingly, we found that genes serving cell-autonomous functions and genes involved in multicellularity obey distinct codon usage. Proliferation-induced and differentiation-induced tRNAs often carry anticodons that correspond to the codons enriched among the cell-autonomous and the multicellularity genes, respectively. Because mRNAs of cell-autonomous genes are induced in proliferation and cancer in particular, the concomitant induction of their codon-enriched tRNAs suggests coordination between transcription and translation. Histone modifications indeed change similarly in the vicinity of cell-autonomous genes and their corresponding tRNAs, and in multicellularity genes and their tRNAs, suggesting the existence of transcriptional programs coordinating tRNA supply and demand. Hence, we describe the existence of two distinct translation programs that operate during proliferation and differentiation.
                Bookmark

                Author and article information

                Journal
                Mol Ther Nucleic Acids
                Mol Ther Nucleic Acids
                Molecular Therapy. Nucleic Acids
                Nature Publishing Group
                2162-2531
                December 2016
                06 December 2016
                1 December 2016
                : 5
                : 12
                : e397
                Affiliations
                [1 ]Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung, Taiwan
                [2 ]Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University , Kaohsiung, Taiwan
                [3 ]School of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung, Taiwan
                [4 ]Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital , Kaohsiung, Taiwan
                [5 ]Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University , Kaohsiung, Taiwan
                [6 ]Institute of Medical Science and Technology, National Sun Yat-Sen University , Kaohsiung, Taiwan
                Author notes
                [* ]Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan. E-mail: yohoco@ 123456gmail.com
                [* ]Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan. E-mail: kuopolin@ 123456seed.net.tw
                Article
                mtna2016105
                10.1038/mtna.2016.105
                5159481
                27922590
                cec04782-9057-4345-a534-8667ffc207a4
                Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

                History
                : 27 September 2016
                : 01 November 2016
                Categories
                Original Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article