2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Luzindole and 4P-PDOT block the effect of melatonin on bovine granulosa cell apoptosis and cell cycle depending on its concentration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Granulosa cells play an essential physiological role in mediating the follicle development and survival or apoptosis of granulosa cells dictate the follicle development or atresia. The aim of this study was to investigate the role of high dose (10 −5 M) and low dose (10 −9 M) melatonin in bovine granulosa cells, and assess whether MT1 and MT2 inhibiter affect granulosa cells response to melatonin. We found that the high dose (10 −5 M) and low dose (10 −9 M) both could act as an essential role in modulating granulosa cells apoptosis, cell cycle and antioxidant. The beneficial effect could be related to that melatonin promoted the expression of Bcl2, Bcl-xl, SOD1 and GPX4, and inhibited Bax, caspase-3 and p53 expression. Moreover P21 expression was decreased in granulosa cells treated with the high dose (10 −5 M) melatonin and increased in that treated with the low dose (10 −9 M) melatonin. To further reveal the role of MT1 and MT2 in mediating the effect of melatonin on granulosa cells apoptosis, cell cycle and antioxidant, we found that the luzindole and 4P-PDOT did not affect the effect of high dose (10 −5 M) melatonin on regulating Bcl2, Bax, caspase-3, SOD1, GPX4 and p53 expression, while blocked its effect on modulating Bcl-xl and P21expression. However, luzindole and 4P-PDOT disturbed the effect of low dose (10 −9 M) melatonin on regulating Bcl2, Bax, caspase-3, Bcl-xl, SOD1, GPX4, and p53 expression. In conclusion, these results reveal that the effect of low dose (10 −9 M) melatonin on granulosa cells apoptosis are mediated by MT1 and MT2, and the high dose (10 −5 M) melatonin affect the granulosa cells apoptosis by other pathway, besides MT1 and MT2. Moreover MT1 and MT2 may work in concert to modulate bovine granulosa cells function by regulating cellular progression and apoptosis.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes.

            Mitochondria and chloroplasts are major sources of free radical generation in living organisms. Because of this, these organelles require strong protection from free radicals and associated oxidative stress. Melatonin is a potent free radical scavenger and antioxidant. It meets the criteria as a mitochondrial and chloroplast antioxidant. Evidence has emerged to show that both mitochondria and chloroplasts may have the capacity to synthesize and metabolize melatonin. The activity of arylalkylamine N-acetyltransferase (AANAT), the reported rate-limiting enzyme in melatonin synthesis, has been identified in mitochondria, and high levels of melatonin have also been found in this organelle. From an evolutionary point of view, the precursor of mitochondria probably is the purple nonsulfur bacterium, particularly, Rhodospirillum rubrum, and chloroplasts are probably the descendents of cyanobacteria. These bacterial species were endosymbionts of host proto-eukaryotes and gradually transformed into cellular organelles, that is, mitochondria and chloroplasts, respectively, thereby giving rise to eukaryotic cells. Of special importance, both purple nonsulfur bacteria (R. rubrum) and cyanobacteria synthesize melatonin. The enzyme activities required for melatonin synthesis have also been detected in these primitive species. It is our hypothesis that mitochondria and chloroplasts are the original sites of melatonin synthesis in the early stage of endosymbiotic organisms; this synthetic capacity was carried into host eukaryotes by the above-mentioned bacteria. Moreover, their melatonin biosynthetic capacities have been preserved during evolution. In most, if not in all cells, mitochondria and chloroplasts may continue to be the primary sites of melatonin generation. Melatonin production in other cellular compartments may have derived from mitochondria and chloroplasts. On the basis of this hypothesis, it is also possible to explain why plants typically have higher melatonin levels than do animals. In plants, both chloroplasts and mitochondria likely synthesize melatonin, while animal cells contain only mitochondria. The high levels of melatonin produced by mitochondria and chloroplasts are used to protect these important cellular organelles against oxidative stress and preserve their physiological functions. The superior beneficial effects of melatonin in both mitochondria and chloroplasts have been frequently reported. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release

              G protein-coupled receptors (GPCRs) are classically characterized as cell-surface receptors transmitting extracellular signals into cells. Here we show that central components of a GPCR signaling system comprised of the melatonin type 1 receptor (MT1), its associated G protein, and β-arrestins are on and within neuronal mitochondria. We discovered that the ligand melatonin is exclusively synthesized in the mitochondrial matrix and released by the organelle activating the mitochondrial MT1 signal-transduction pathway inhibiting stress-mediated cytochrome c release and caspase activation. These findings coupled with our observation that mitochondrial MT1 overexpression reduces ischemic brain injury in mice delineate a mitochondrial GPCR mechanism contributing to the neuroprotective action of melatonin. We propose a new term, "automitocrine," analogous to "autocrine" when a similar phenomenon occurs at the cellular level, to describe this unexpected intracellular organelle ligand-receptor pathway that opens a new research avenue investigating mitochondrial GPCR biology.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                8 March 2021
                2021
                : 9
                : e10627
                Affiliations
                [1 ]College of Animal Science, Anhui Science and Technology University , Fengyang, China
                [2 ]Anhui Province Key Laboratory of Animal Nutritional Regulation and Health , Fengyang, China
                [3 ]College of Life and Health Science, Anhui Science and Technology University , Fengyang, China
                Article
                10627
                10.7717/peerj.10627
                7950190
                ceb69c2b-1b79-44fe-a007-55bc05f0a53d
                © 2021 Wang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 12 August 2020
                : 30 November 2020
                Funding
                Funded by: National Natural Science Foundation
                Award ID: 31301972
                Funded by: Natural Science Foundation
                Award ID: 2008085MC94
                Funded by: Outstanding Youth Talent in University
                Award ID: gxyq2018049
                Funded by: Key Research and Development Project
                Award ID: 2018ZN014
                Funded by: Key Research and Development Program
                Award ID: 202004f06020048
                This study was financially supported by the National Natural Science Foundation (31301972), the Natural Science Foundation of Anhui Province (2008085MC94), the Project Supported by the Plan of Anhui Province for Outstanding Youth Talent in University (gxyq2018049), the Key research and development project of Chuzhou (2018ZN014) and the Key Research and development program of Anhui Province (202004f06020048). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Cell Biology
                Molecular Biology

                melatonin,melatonin receptor antagonist,bovine,granulosa cell,gene regulation

                Comments

                Comment on this article