7
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Perceptions of US Medical Students on Artificial Intelligence in Medicine: Mixed Methods Survey Study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Given the rapidity with which artificial intelligence is gaining momentum in clinical medicine, current physician leaders have called for more incorporation of artificial intelligence topics into undergraduate medical education. This is to prepare future physicians to better work together with artificial intelligence technology. However, the first step in curriculum development is to survey the needs of end users. There has not been a study to determine which media and which topics are most preferred by US medical students to learn about the topic of artificial intelligence in medicine.

          Objective

          We aimed to survey US medical students on the need to incorporate artificial intelligence in undergraduate medical education and their preferred means to do so to assist with future education initiatives.

          Methods

          A mixed methods survey comprising both specific questions and a write-in response section was sent through Qualtrics to US medical students in May 2021. Likert scale questions were used to first assess various perceptions of artificial intelligence in medicine. Specific questions were posed regarding learning format and topics in artificial intelligence.

          Results

          We surveyed 390 US medical students with an average age of 26 (SD 3) years from 17 different medical programs (the estimated response rate was 3.5%). A majority (355/388, 91.5%) of respondents agreed that training in artificial intelligence concepts during medical school would be useful for their future. While 79.4% (308/388) were excited to use artificial intelligence technologies, 91.2% (353/387) either reported that their medical schools did not offer resources or were unsure if they did so. Short lectures (264/378, 69.8%), formal electives (180/378, 47.6%), and Q and A panels (167/378, 44.2%) were identified as preferred formats, while fundamental concepts of artificial intelligence (247/379, 65.2%), when to use artificial intelligence in medicine (227/379, 59.9%), and pros and cons of using artificial intelligence (224/379, 59.1%) were the most preferred topics for enhancing their training.

          Conclusions

          The results of this study indicate that current US medical students recognize the importance of artificial intelligence in medicine and acknowledge that current formal education and resources to study artificial intelligence–related topics are limited in most US medical schools. Respondents also indicated that a hybrid formal/flexible format would be most appropriate for incorporating artificial intelligence as a topic in US medical schools. Based on these data, we conclude that there is a definitive knowledge gap in artificial intelligence education within current medical education in the US. Further, the results suggest there is a disparity in opinions on the specific format and topics to be introduced.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          High-performance medicine: the convergence of human and artificial intelligence

          Eric Topol (2019)
          The use of artificial intelligence, and the deep-learning subtype in particular, has been enabled by the use of labeled big data, along with markedly enhanced computing power and cloud storage, across all sectors. In medicine, this is beginning to have an impact at three levels: for clinicians, predominantly via rapid, accurate image interpretation; for health systems, by improving workflow and the potential for reducing medical errors; and for patients, by enabling them to process their own data to promote health. The current limitations, including bias, privacy and security, and lack of transparency, along with the future directions of these applications will be discussed in this article. Over time, marked improvements in accuracy, productivity, and workflow will likely be actualized, but whether that will be used to improve the patient-doctor relationship or facilitate its erosion remains to be seen.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The potential for artificial intelligence in healthcare

            The complexity and rise of data in healthcare means that artificial intelligence (AI) will increasingly be applied within the field. Several types of AI are already being employed by payers and providers of care, and life sciences companies. The key categories of applications involve diagnosis and treatment recommendations, patient engagement and adherence, and administrative activities. Although there are many instances in which AI can perform healthcare tasks as well or better than humans, implementation factors will prevent large-scale automation of healthcare professional jobs for a considerable period. Ethical issues in the application of AI to healthcare are also discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Artificial intelligence in medicine.

              Artificial Intelligence (AI) is a general term that implies the use of a computer to model intelligent behavior with minimal human intervention. AI is generally accepted as having started with the invention of robots. The term derives from the Czech word robota, meaning biosynthetic machines used as forced labor. In this field, Leonardo Da Vinci's lasting heritage is today's burgeoning use of robotic-assisted surgery, named after him, for complex urologic and gynecologic procedures. Da Vinci's sketchbooks of robots helped set the stage for this innovation. AI, described as the science and engineering of making intelligent machines, was officially born in 1956. The term is applicable to a broad range of items in medicine such as robotics, medical diagnosis, medical statistics, and human biology-up to and including today's "omics". AI in medicine, which is the focus of this review, has two main branches: virtual and physical. The virtual branch includes informatics approaches from deep learning information management to control of health management systems, including electronic health records, and active guidance of physicians in their treatment decisions. The physical branch is best represented by robots used to assist the elderly patient or the attending surgeon. Also embodied in this branch are targeted nanorobots, a unique new drug delivery system. The societal and ethical complexities of these applications require further reflection, proof of their medical utility, economic value, and development of interdisciplinary strategies for their wider application.
                Bookmark

                Author and article information

                Contributors
                Journal
                JMIR Med Educ
                JMIR Med Educ
                JME
                JMIR Medical Education
                JMIR Publications (Toronto, Canada )
                2369-3762
                Oct-Dec 2022
                21 October 2022
                : 8
                : 4
                : e38325
                Affiliations
                [1 ] College of Medicine and Life Sciences University of Toledo Toledo, OH United States
                [2 ] Pediatric Radiology Ann & Robert H Lurie Children's Hospital of Chicago Chicago, IL United States
                [3 ] Department of Physiology and Pharmacology College of Medicine and Life Sciences University of Toledo Toledo, OH United States
                Author notes
                Corresponding Author: Bina Joe bina.joe@ 123456utoledo.edu
                Author information
                https://orcid.org/0000-0002-1279-9580
                https://orcid.org/0000-0003-2921-526X
                https://orcid.org/0000-0002-8335-7915
                https://orcid.org/0000-0003-2403-7791
                https://orcid.org/0000-0002-4411-0143
                https://orcid.org/0000-0003-4799-9352
                https://orcid.org/0000-0003-1317-984X
                https://orcid.org/0000-0002-2385-7061
                Article
                v8i4e38325
                10.2196/38325
                9636531
                36269641
                ceb2e60e-2735-4d92-a4ac-9fcdddcdc12c
                ©David Shalom Liu, Jake Sawyer, Alexander Luna, Jihad Aoun, Janet Wang, Lord Boachie, Safwan Halabi, Bina Joe. Originally published in JMIR Medical Education (https://mededu.jmir.org), 21.10.2022.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Education, is properly cited. The complete bibliographic information, a link to the original publication on https://mededu.jmir.org/, as well as this copyright and license information must be included.

                History
                : 28 March 2022
                : 6 July 2022
                : 31 August 2022
                : 12 September 2022
                Categories
                Original Paper
                Original Paper

                artificial intelligence,ehealth,digital health,integration,medical education,medical curriculum,education,medical student,medical school,elective course

                Comments

                Comment on this article