24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Achieving Ultimate Narrowband and Ultrapure Blue Organic Light‐Emitting Diodes Based on Polycyclo‐Heteraborin Multi‐Resonance Delayed‐Fluorescence Emitters

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Highly efficient organic light-emitting diodes from delayed fluorescence.

          The inherent flexibility afforded by molecular design has accelerated the development of a wide variety of organic semiconductors over the past two decades. In particular, great advances have been made in the development of materials for organic light-emitting diodes (OLEDs), from early devices based on fluorescent molecules to those using phosphorescent molecules. In OLEDs, electrically injected charge carriers recombine to form singlet and triplet excitons in a 1:3 ratio; the use of phosphorescent metal-organic complexes exploits the normally non-radiative triplet excitons and so enhances the overall electroluminescence efficiency. Here we report a class of metal-free organic electroluminescent molecules in which the energy gap between the singlet and triplet excited states is minimized by design, thereby promoting highly efficient spin up-conversion from non-radiative triplet states to radiative singlet states while maintaining high radiative decay rates, of more than 10(6) decays per second. In other words, these molecules harness both singlet and triplet excitons for light emission through fluorescence decay channels, leading to an intrinsic fluorescence efficiency in excess of 90 per cent and a very high external electroluminescence efficiency, of more than 19 per cent, which is comparable to that achieved in high-efficiency phosphorescence-based OLEDs.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Organic electroluminescent diodes

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Highly efficient phosphorescent emission from organic electroluminescent devices

                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Materials
                Advanced Materials
                Wiley
                0935-9648
                1521-4095
                March 2022
                January 20 2022
                March 2022
                : 34
                : 9
                : 2107951
                Affiliations
                [1 ]INAMORI Frontier Research Center (IFRC) Kyushu University 744 Motooka, Nishi‐ku Fukuoka 819‐0395 Japan
                [2 ]Nippon Soda Co., Ltd. 2‐2‐1 Ohtemachi Chiyoda‐ku Tokyo 100‐8165 Japan
                Article
                10.1002/adma.202107951
                34877725
                ce8c1596-dbd8-4b18-ae0d-1951cfaf2819
                © 2022

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article