20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CircHMGCS1 Promotes Hepatoblastoma Cell Proliferation by Regulating the IGF Signaling Pathway and Glutaminolysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Circular RNAs (circRNAs), a novel class of endogenous RNAs, have been recently shown to participate in cellular development and several pathophysiological processes. The identification of dysregulated circRNAs and their function in cancer have attracted considerable attention. Nevertheless, the expression profile and role of circRNAs in human hepatoblastoma (HB) remain to be studied. In this report, we analyzed the expression prolife of circRNAs in HB tissues and identified circHMGCS1 (3-hydroxy-3-methylglutaryl-CoA synthase 1; hsa_circ_0072391) as a remarkably upregulated circRNA.

          Methods: The expression prolife of circRNAs in HB tissues were investigated through circRNA sequencing analyses. ISH and qRT-PCR assays were performed to measure the expression level of circHMGCS1. The effect of knocking down circHMGCS1 in HB cells in vitro and in vivo were evaluated by colony formation assay, flow cytometry, xenograft tumors assay and untargeted metabolomics assay. MRE analysis and dual luciferase assay were performed to explore the underlying molecular mechanisms.

          Results: HB patients with high circHMGCS1 expression have shorted overall survival. Knockdown of circHMGCS1 inhibits HB cells proliferation and induces apoptosis. CircHMGCS1 regulates IGF2 and IGF1R expression via sponging miR-503-5p, and affects the downstream PI3K-Akt signaling pathway to regulate HB cell proliferation and glutaminolysis.

          Conclusions: The circHMGCS1/miR-503-5p/IGF-PI3K-Akt axis regulates the proliferation, apoptosis and glutaminolysis of HB cells, implying that circHMGCS1 is a promising therapeutic target and prognostic marker for HB patients.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy

          The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database is a collection of genomic, transcript and protein sequence records. These records are selected and curated from public sequence archives and represent a significant reduction in redundancy compared to the volume of data archived by the International Nucleotide Sequence Database Collaboration. The database includes over 16 000 organisms, 2.4 × 106 genomic records, 13 × 106 proteins and 2 × 106 RNA records spanning prokaryotes, eukaryotes and viruses (RefSeq release 49, September 2011). The RefSeq database is maintained by a combined approach of automated analyses, collaboration and manual curation to generate an up-to-date representation of the sequence, its features, names and cross-links to related sources of information. We report here on recent growth, the status of curating the human RefSeq data set, more extensive feature annotation and current policy for eukaryotic genome annotation via the NCBI annotation pipeline. More information about the resource is available online (see http://www.ncbi.nlm.nih.gov/RefSeq/).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer.

            Glutamine serves as an important source of energy and building blocks for many tumor cells. The first step in glutamine utilization is its conversion to glutamate by the mitochondrial enzyme glutaminase. CB-839 is a potent, selective, and orally bioavailable inhibitor of both splice variants of glutaminase (KGA and GAC). CB-839 had antiproliferative activity in a triple-negative breast cancer (TNBC) cell line, HCC-1806, that was associated with a marked decrease in glutamine consumption, glutamate production, oxygen consumption, and the steady-state levels of glutathione and several tricarboxylic acid cycle intermediates. In contrast, no antiproliferative activity was observed in an estrogen receptor-positive cell line, T47D, and only modest effects on glutamine consumption and downstream metabolites were observed. Across a panel of breast cancer cell lines, GAC protein expression and glutaminase activity were elevated in the majority of TNBC cell lines relative to receptor positive cells. Furthermore, the TNBC subtype displayed the greatest sensitivity to CB-839 treatment and this sensitivity was correlated with (i) dependence on extracellular glutamine for growth, (ii) intracellular glutamate and glutamine levels, and (iii) GAC (but not KGA) expression, a potential biomarker for sensitivity. CB-839 displayed significant antitumor activity in two xenograft models: as a single agent in a patient-derived TNBC model and in a basal like HER2(+) cell line model, JIMT-1, both as a single agent and in combination with paclitaxel. Together, these data provide a strong rationale for the clinical investigation of CB-839 as a targeted therapeutic in patients with TNBC and other glutamine-dependent tumors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hepatic stem-like phenotype and interplay of Wnt/beta-catenin and Myc signaling in aggressive childhood liver cancer.

              Hepatoblastoma, the most common pediatric liver cancer, is tightly linked to excessive Wnt/beta-catenin signaling. Here, we used microarray analysis to identify two tumor subclasses resembling distinct phases of liver development and a discriminating 16-gene signature. beta-catenin activated different transcriptional programs in the two tumor types, with distinctive expression of hepatic stem/progenitor markers in immature tumors. This highly proliferating subclass was typified by gains of chromosomes 8q and 2p and upregulated Myc signaling. Myc-induced hepatoblastoma-like tumors in mice strikingly resembled the human immature subtype, and Myc downregulation in hepatoblastoma cells impaired tumorigenesis in vivo. Remarkably, the 16-gene signature discriminated invasive and metastatic hepatoblastomas and predicted prognosis with high accuracy.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2019
                25 January 2019
                : 9
                : 3
                : 900-919
                Affiliations
                [1 ]Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China.
                [2 ]Department of Surgery, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
                [3 ]Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
                [4 ]Department of Pathology, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
                Author notes
                ✉ Corresponding authors: Qiuhui Pan, Tel: +86 021-38625568; Email: panqiuhui@ 123456scmc.com.cn or Fenyong Sun, Tel: +86 021-66303482; Email: sunfenyong@ 123456263.net .

                *The first three authors should be regarded as joint First Authors.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov09p0900
                10.7150/thno.29515
                6376477
                30809316
                ce8afe04-a11d-4923-afa5-ef6f8cb031ab
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 27 August 2018
                : 29 December 2018
                Categories
                Research Paper

                Molecular medicine
                hepatoblastoma,circhmgcs1,igf2,gls,competing endogenous rnas
                Molecular medicine
                hepatoblastoma, circhmgcs1, igf2, gls, competing endogenous rnas

                Comments

                Comment on this article