Pathogenic bacteria acquire new virulence strategies for exploiting their hosts. This work reveals that the bacterial wheat pathogen Xanthomonas translucens uses a transcription activation-like (TAL) effector to promote virulence by directly activating the host gene 9- cis-epoxycarotenoid dioxygenase, the rate-limiting enzyme in biosynthesis of abscisic acid that is normally involved in water management within the host plant. Evolutionarily, TAL effectors are a relatively new class of virulence factors limited to a few species of pathogenic bacteria, and this work adds to the diversity of host susceptibility genes that can be exploited by pathogens through TAL effector gene function.
Plants are vulnerable to disease through pathogen manipulation of phytohormone levels, which otherwise regulate development, abiotic, and biotic responses. Here, we show that the wheat pathogen Xanthomonas translucens pv. undulosa elevates expression of the host gene encoding 9- cis-epoxycarotenoid dioxygenase ( TaNCED-5BS), which catalyzes the rate-limiting step in the biosynthesis of the phytohormone abscisic acid and a component of a major abiotic stress-response pathway, to promote disease susceptibility. Gene induction is mediated by a type III transcription activator-like effector. The induction of TaNCED-5BS results in elevated abscisic acid levels, reduced host transpiration and water loss, enhanced spread of bacteria in infected leaves, and decreased expression of the central defense gene TaNPR1. The results represent an appropriation of host physiology by a bacterial virulence effector.