3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GNAQ and GNA11 Genes: A Comprehensive Review on Oncogenesis, Prognosis and Therapeutic Opportunities in Uveal Melanoma

      , , , , ,
      Cancers
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The GNAQ and GNA11 genes are mutated in almost 80–90% of uveal melanomas in a mutually exclusive pattern. These genes encode the alpha subunits of the heterotrimeric G proteins, Gq and G11; thus, mutations of these genes result in the activation of several important signaling pathways, including phospholipase C, and activation of the transcription factor YAP. It is well known that both of them act as driver genes in the oncogenic process and it has been assumed that they do not play a role in the prognosis of these tumours. However, it has been hypothesised that mutations in these genes could give rise to molecularly and clinically distinct types of uveal melanomas. It has also been questioned whether the type and location of mutation in the GNAQ and GNA11 genes may affect the progression of these tumours. All of these questions, except for their implications in carcinogenesis, remain controversial. Uveal melanoma has a distinctive genetic profile, and specific recurrent mutations, which make it a potential candidate for treatment with targeted therapy. Given that the most frequent mutations are those observed in the GNAQ and GNA11 genes, and that both genes are involved in oncogenesis, these molecules, as well as the downstream signalling pathways in which they are involved, have been proposed as promising potential therapeutic targets. Therefore, in this review, special attention is paid to the current data related to the possible prognostic implications of both genes from different perspectives, as well as the therapeutic options targeting them.

          Related collections

          Most cited references119

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations in GNA11 in uveal melanoma.

          Uveal melanoma is the most common intraocular cancer. There are no effective therapies for metastatic disease. Mutations in GNAQ, the gene encoding an alpha subunit of heterotrimeric G proteins, are found in 40% of uveal melanomas. We sequenced exon 5 of GNAQ and GNA11, a paralogue of GNAQ, in 713 melanocytic neoplasms of different types (186 uveal melanomas, 139 blue nevi, 106 other nevi, and 282 other melanomas). We sequenced exon 4 of GNAQ and GNA11 in 453 of these samples and in all coding exons of GNAQ and GNA11 in 97 uveal melanomas and 45 blue nevi. We found somatic mutations in exon 5 (affecting Q209) and in exon 4 (affecting R183) in both GNA11 and GNAQ, in a mutually exclusive pattern. Mutations affecting Q209 in GNA11 were present in 7% of blue nevi, 32% of primary uveal melanomas, and 57% of uveal melanoma metastases. In contrast, we observed Q209 mutations in GNAQ in 55% of blue nevi, 45% of uveal melanomas, and 22% of uveal melanoma metastases. Mutations affecting R183 in either GNAQ or GNA11 were less prevalent (2% of blue nevi and 6% of uveal melanomas) than the Q209 mutations. Mutations in GNA11 induced spontaneously metastasizing tumors in a mouse model and activated the mitogen-activated protein kinase pathway. Of the uveal melanomas we analyzed, 83% had somatic mutations in GNAQ or GNA11. Constitutive activation of the pathway involving these two genes appears to be a major contributor to the development of uveal melanoma. (Funded by the National Institutes of Health and others.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A landscape of driver mutations in melanoma.

            Despite recent insights into melanoma genetics, systematic surveys for driver mutations are challenged by an abundance of passenger mutations caused by carcinogenic UV light exposure. We developed a permutation-based framework to address this challenge, employing mutation data from intronic sequences to control for passenger mutational load on a per gene basis. Analysis of large-scale melanoma exome data by this approach discovered six novel melanoma genes (PPP6C, RAC1, SNX31, TACC1, STK19, and ARID2), three of which-RAC1, PPP6C, and STK19-harbored recurrent and potentially targetable mutations. Integration with chromosomal copy number data contextualized the landscape of driver mutations, providing oncogenic insights in BRAF- and NRAS-driven melanoma as well as those without known NRAS/BRAF mutations. The landscape also clarified a mutational basis for RB and p53 pathway deregulation in this malignancy. Finally, the spectrum of driver mutations provided unequivocal genomic evidence for a direct mutagenic role of UV light in melanoma pathogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FAK in cancer: mechanistic findings and clinical applications.

              Focal adhesion kinase (FAK) is a cytoplasmic protein tyrosine kinase that is overexpressed and activated in several advanced-stage solid cancers. FAK promotes tumour progression and metastasis through effects on cancer cells, as well as stromal cells of the tumour microenvironment. The kinase-dependent and kinase-independent functions of FAK control cell movement, invasion, survival, gene expression and cancer stem cell self-renewal. Small molecule FAK inhibitors decrease tumour growth and metastasis in several preclinical models and have initial clinical activity in patients with limited adverse events. In this Review, we discuss FAK signalling effects on both tumour and stromal cell biology that provide rationale and support for future therapeutic opportunities.
                Bookmark

                Author and article information

                Contributors
                Journal
                CANCCT
                Cancers
                Cancers
                MDPI AG
                2072-6694
                July 2022
                June 22 2022
                : 14
                : 13
                : 3066
                Article
                10.3390/cancers14133066
                35804836
                ce4d153c-4c54-4014-8074-3bbc1223d6fb
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article