3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Do NMDA-R antagonists re-create patterns of spontaneous gamma-band activity in schizophrenia? A systematic review and perspective

      ,
      Neuroscience & Biobehavioral Reviews
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d8726549e67">NMDA-R hypofunctioninig is a core pathophysiological mechanism in schizophrenia. However, it is unclear whether the physiological changes observed following NMDA-R antagonist administration are consistent with gamma-band alterations in schizophrenia. This systematic review examined the effects of NMDA-R antagonists on the amplitude of spontaneous gamma-band activity and functional connectivity obtained from preclinical (n = 24) and human (n = 9) studies and compared these data to resting-state EEG/MEG-measurements in schizophrenia patients (n = 27). Overall, the majority of preclinical and human studies observed increased gamma-band power following acute administration of NMDA-R antagonists. However, the direction of gamma-band power alterations in schizophrenia were inconsistent, which involved upregulation (n = 10), decreases (n = 7), and no changes (n = 8) in spectral power. Five out of 6 preclinical studies observed increased connectivity, while in healthy controls receiving Ketamine and in schizophrenia patients the direction of connectivity results was also inconsistent. Accordingly, the effects of NMDA-R hypofunctioning on gamma-band oscillations are different than pathophysiological signatures observed in schizophrenia. The implications of these findings for current E/I balance models of schizophrenia are discussed. </p>

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions

          Non-randomised studies of the effects of interventions are critical to many areas of healthcare evaluation, but their results may be biased. It is therefore important to understand and appraise their strengths and weaknesses. We developed ROBINS-I (“Risk Of Bias In Non-randomised Studies - of Interventions”), a new tool for evaluating risk of bias in estimates of the comparative effectiveness (harm or benefit) of interventions from studies that did not use randomisation to allocate units (individuals or clusters of individuals) to comparison groups. The tool will be particularly useful to those undertaking systematic reviews that include non-randomised studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            SYRCLE’s risk of bias tool for animal studies

            Background Systematic Reviews (SRs) of experimental animal studies are not yet common practice, but awareness of the merits of conducting such SRs is steadily increasing. As animal intervention studies differ from randomized clinical trials (RCT) in many aspects, the methodology for SRs of clinical trials needs to be adapted and optimized for animal intervention studies. The Cochrane Collaboration developed a Risk of Bias (RoB) tool to establish consistency and avoid discrepancies in assessing the methodological quality of RCTs. A similar initiative is warranted in the field of animal experimentation. Methods We provide an RoB tool for animal intervention studies (SYRCLE’s RoB tool). This tool is based on the Cochrane RoB tool and has been adjusted for aspects of bias that play a specific role in animal intervention studies. To enhance transparency and applicability, we formulated signalling questions to facilitate judgment. Results The resulting RoB tool for animal studies contains 10 entries. These entries are related to selection bias, performance bias, detection bias, attrition bias, reporting bias and other biases. Half these items are in agreement with the items in the Cochrane RoB tool. Most of the variations between the two tools are due to differences in design between RCTs and animal studies. Shortcomings in, or unfamiliarity with, specific aspects of experimental design of animal studies compared to clinical studies also play a role. Conclusions SYRCLE’s RoB tool is an adapted version of the Cochrane RoB tool. Widespread adoption and implementation of this tool will facilitate and improve critical appraisal of evidence from animal studies. This may subsequently enhance the efficiency of translating animal research into clinical practice and increase awareness of the necessity of improving the methodological quality of animal studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neocortical excitation/inhibition balance in information processing and social dysfunction.

              Severe behavioural deficits in psychiatric diseases such as autism and schizophrenia have been hypothesized to arise from elevations in the cellular balance of excitation and inhibition (E/I balance) within neural microcircuitry. This hypothesis could unify diverse streams of pathophysiological and genetic evidence, but has not been susceptible to direct testing. Here we design and use several novel optogenetic tools to causally investigate the cellular E/I balance hypothesis in freely moving mammals, and explore the associated circuit physiology. Elevation, but not reduction, of cellular E/I balance within the mouse medial prefrontal cortex was found to elicit a profound impairment in cellular information processing, associated with specific behavioural impairments and increased high-frequency power in the 30-80 Hz range, which have both been observed in clinical conditions in humans. Consistent with the E/I balance hypothesis, compensatory elevation of inhibitory cell excitability partially rescued social deficits caused by E/I balance elevation. These results provide support for the elevated cellular E/I balance hypothesis of severe neuropsychiatric disease-related symptoms.
                Bookmark

                Author and article information

                Journal
                Neuroscience & Biobehavioral Reviews
                Neuroscience & Biobehavioral Reviews
                Elsevier BV
                01497634
                May 2021
                May 2021
                : 124
                : 308-323
                Article
                10.1016/j.neubiorev.2021.02.005
                33581223
                ce2ef4a7-28a4-450e-ac45-3a64b71bda69
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article