Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
79
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Iodine Excess as an Environmental Risk Factor for Autoimmune Thyroid Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The global effort to prevent iodine deficiency disorders through iodine supplementation, such as universal salt iodization, has achieved impressive progress during the last few decades. However, iodine excess, due to extensive environmental iodine exposure in addition to poor monitoring, is currently a more frequent occurrence than iodine deficiency. Iodine excess is a precipitating environmental factor in the development of autoimmune thyroid disease. Excessive amounts of iodide have been linked to the development of autoimmune thyroiditis in humans and animals, while intrathyroidal depletion of iodine prevents disease in animal strains susceptible to severe thyroiditis. Although the mechanisms by which iodide induces thyroiditis are still unclear, several mechanisms have been proposed: (1) excess iodine induces the production of cytokines and chemokines that can recruit immunocompetent cells to the thyroid; (2) processing excess iodine in thyroid epithelial cells may result in elevated levels of oxidative stress, leading to harmful lipid oxidation and thyroid tissue injuries; and (3) iodine incorporation in the protein chain of thyroglobulin may augment the antigenicity of this molecule. This review will summarize the current knowledge regarding excess iodide as an environmental toxicant and relate it to the development of autoimmune thyroid disease.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS).

          Pendred syndrome is a recessively inherited disorder with the hallmark features of congenital deafness and thyroid goitre. By some estimates, the disorder may account for upwards of 10% of hereditary deafness. Previous genetic linkage studies localized the gene to a broad interval on human chromosome 7q22-31.1. Using a positional cloning strategy, we have identified the gene (PDS) mutated in Pendred syndrome and found three apparently deleterious mutations, each segregating with the disease in the respective families in which they occur. PDS produces a transcript of approximately 5 kb that was found to be expressed at significant levels only in the thyroid. The predicted protein, pendrin, is closely related to a number of known sulphate transporters. These studies provide compelling evidence that defects in pendrin cause Pendred syndrome thereby launching a new area of investigation into thyroid physiology, the pathogenesis of congenital deafness and the role of altered sulphate transport in human disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Iodine intake as a determinant of thyroid disorders in populations.

            Depending on the availability of iodine, the thyroid gland is able to enhance or limit the use of iodine for thyroid hormone production. When compensation fails, as in severely iodine-deficient populations, hypothyroidism and developmental brain damage will be the dominating disorders. This is, out of all comparison, the most serious association between disease and the level of iodine intake in a population. In less severe iodine deficiency, the normal thyroid gland is able to adapt and keep thyroid hormone production within the normal range. However, the prolonged thyroid hyperactivity associated with such adaptation leads to thyroid growth, and during follicular cell proliferation there is a tendency to mutations leading to multifocal autonomous growth and function. In populations with mild and moderate iodine deficiency, such multifocal autonomous thyroid function is a common cause of hyperthyroidism in elderly people, and the prevalence of thyroid enlargement and nodularity is high. The average serum TSH tends to decrease with age in such populations caused by the high frequency of autonomous thyroid hormone production. On the other hand, epidemiological studies have shown that hypothyroidism is more prevalent in populations with a high iodine intake. Probably, this is also a complication to thyroid adaptation to iodine intake. Many thyroid processes are inhibited when iodine intake becomes high, and the frequency of apoptosis of follicular cells becomes higher. Abnormal inhibition of thyroid function by high levels of iodine is especially common in people affected by thyroid autoimmunity (Hashimoto's thyroiditis). In populations with high iodine intake, the average serum thyroid-stimulating hormone (TSH) tends to increase with age. This phenomenon is especially pronounced in Caucasian populations with a genetically determined high tendency to thyroid autoimmunity. A small tendency to higher serum TSH may be observed already when iodine intake is brought from mildly deficient to adequate, but there is at present no evidence that slightly elevated serum TSH in elderly people leads to an increase in morbidity and mortality. Even minor differences in iodine intake between populations are associated with differences in the occurrence of thyroid disorders. Both iodine intake levels below and above the recommended interval are associated with an increase in the risk of disease in the population. Optimally, iodine intake of a population should be kept within a relatively narrow interval where iodine deficiency disorders are prevented, but not higher. Monitoring and adjusting of iodine intake in a population is an important part of preventive medicine. Copyright 2009 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thyroid hormones and their effects: a new perspective.

              The thyroid hormones are very hydrophobic and those that exhibit biological activity are 3',5',3,5-L-tetraiodothyronine (T4), 3',5,3-L-triiodothyronine (T3), 3',5',3-L-triiodothyronine (rT3) and 3,5',-L-diiothyronine (3,5-T2). At physiological pH, dissociation of the phenolic -OH group of these iodothyronines is an important determinant of their physical chemistry that impacts on their biological effects. When non-ionized these iodothyronines are strongly amphipathic. It is proposed that iodothyronines are normal constituents of biological membranes in vertebrates. In plasma of adult vertebrates, unbound T4 and T3 are regulated in the picomolar range whilst protein-bound T4 and T3 are maintained in the nanomolar range. The function of thyroid-hormone-binding plasma proteins is to ensure an even distrubtion throughout the body. Various iodothyronines are produced by three types of membrane-bound cellular deiodinase enzyme systems in vertebrates. The distribution of deiodinases varies between tissues and each has a distinct developmental profile. Thyroid hormones. (1) the nuclear receptor mode is especially important in the thyroid hormone axis that controls plasma and cellular levels of these hormones. (2) These hormones are strongly associated with membranes in tissues and normally rigidify these membranes. (3) They also affect the acyl composition of membrane bilayers and it is suggested that this is due to the cells responding to thyroid-hormone-induced membrane rigidificataion. Both their immediate effects on the physical state of membranes and the consequent changes in membrane composition result in several other thyroid hormone effects. Effects on metabolism may be due primarily to membrane acyl changes. There are other actions of thyroid hormones involving membrane receptors and influences on cellular interactions with the extracellulara matrix. The effects of thyroid hormones are reviewed and appear to b combinations of these various modes of action. During development, vertebrates show a surge in T4 and other thyroid hormones, as well as distinctive profiles in the appearance of the deiodinase enzymes and nuclear receptors. Evidence from the use of analogues supports multiple modes of action. Re-examination of data from th early 1960s supports a membrane action. Findings from receptor 'knockout' mice supports an important role for receptors in the development of the thyroid axis. These iodothyronines may be better thought of as 'vitamone'-like molecules than traditional hormonal messengers.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                21 July 2014
                July 2014
                : 15
                : 7
                : 12895-12912
                Affiliations
                [1 ]Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Disease, 4-2-1 Aoba-cho, Higashimurayama-shi, Tokyo 189-0002, Japan; E-Mails: yuqianluo31@ 123456gmail.com (Y.L.); akirak@ 123456jichi.ac.jp (A.K.); yishido@ 123456nih.go.jp (Y.I.); aya.yoshihara@ 123456med.toho-u.ac.jp (A.Y.); kenzaburou.oda@ 123456med.toho-u.ac.jp (K.O.)
                [2 ]Department of Education Planning and Development, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan; E-Mail: n-hiroi@ 123456med.toho-u.ac.jp
                [3 ]Department of Medicine and Bioregulatory Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; E-Mail: itopapa@ 123456intmed3.med.kyushu-u.ac.jp
                [4 ]Leprosy Research Center, National Institute of Infectious Disease, 4-2-1 Aoba-cho, Higashimurayama-shi, Tokyo 189-0002, Japan; E-Mail: norishii@ 123456nih.go.jp
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: koichis@ 123456me.com ; Tel.: +81-42-391-8211; Fax: +81-42-394-9092.
                Article
                ijms-15-12895
                10.3390/ijms150712895
                4139880
                25050783
                ce18bcc0-d12e-4247-bb92-af01c3936d22
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 19 June 2014
                : 03 July 2014
                : 15 July 2014
                Categories
                Review

                Molecular biology
                excess iodine,autoimmune thyroid disease,environmental toxicant,immune response,tissue injury,thyroglobulin

                Comments

                Comment on this article