8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Polydopamine/puerarin nanoparticle-incorporated hybrid hydrogels for enhanced wound healing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxidative damage generated would disrupt the oxidant/antioxidant balance in cells, causing slow wound healing and tissue regeneration. Hydrogel dressing with antioxidant properties can promote wound healing, however, its design is still a challenge.

          Abstract

          Oxidative damage generated by various biochemical pathways can disrupt the oxidant/antioxidant balance in cells, causing slow wound healing and tissue regeneration; in this regard, a hydrogel dressing with antioxidant properties can promote wound healing; however, its design is still a challenge. Herein, a polydopamine/puerarin (PDA/PUE) nanoparticle-incorporated polyethylene glycol diacrylate hybrid hydrogel (PEG-DA/PDA/PUE) with antioxidant properties was prepared and used as a wound-healing material. Experimental observations indicated that the PEG-DA/PDA/PUE hydrogel possessed excellent swelling capacity and mechanical property. Moreover, the antioxidant capability was enhanced with an increase in the concentration of polydopamine/puerarin nanoparticles in the hydrogel. The hydrogel presented good cell proliferation and antioxidant activity, including a decrease in ROS and increase in the superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity under oxidative stress conditions. Furthermore, the full-thickness skin-defect-regeneration process could be accelerated via the antioxidant hydrogel treatment. This study validated the potential applications of an antioxidant hydrogel for wound healing.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing

          Designing wound dressing materials with outstanding therapeutic effects, self-healing, adhesiveness and suitable mechanical property has great practical significance in healthcare, especially for joints skin wound healing. Here, we designed a kind of self-healing injectable micelle/hydrogel composites with multi-functions as wound dressing for joint skin damage. By combining the dynamic Schiff base and copolymer micelle cross-linking in one system, a series of hydrogels were prepared by mixing quaternized chitosan (QCS) and benzaldehyde-terminated Pluronic®F127 (PF127-CHO) under physiological conditions. The inherent antibacterial property, pH-dependent biodegradation and release behavior were investigated to confirm multi-functions of wound dressing. The hydrogel dressings showed suitable stretchable and compressive property, comparable modulus with human skin, good adhesiveness and fast self-healing ability to bear deformation. The hydrogels exhibited efficient hemostatic performance and biocompatibility. Moreover, the curcumin loaded hydrogel showed good antioxidant ability and pH responsive release profiles. In vivo experiments indicated that curcumin loaded hydrogels significantly accelerated wound healing rate with higher granulation tissue thickness and collagen disposition and upregulated vascular endothelial growth factor (VEGF) in a full-thickness skin defect model. Taken together, the antibacterial adhesive hydrogels with self-healing and good mechanical property offer significant promise as dressing materials for joints skin wound healing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing.

            Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive self-healed hydrogels based on quaternized chitosan-g-polyaniline (QCSP) and benzaldehyde group functionalized poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS-FA) as antibacterial, anti-oxidant and electroactive dressing for cutaneous wound healing. These hydrogels presented good self-healing, electroactivity, free radical scavenging capacity, antibacterial activity, adhesiveness, conductivity, swelling ratio, and biocompatibility. Interestingly, the hydrogel with an optimal crosslinker concentration of 1.5 wt% PEGS-FA showed excellent in vivo blood clotting capacity, and it significantly enhanced in vivo wound healing process in a full-thickness skin defect model than quaternized chitosan/PEGS-FA hydrogel and commercial dressing (Tegaderm™ film) by upregulating the gene expression of growth factors including VEGF, EGF and TGF-β and then promoting granulation tissue thickness and collagen deposition. Taken together, the antibacterial electroactive injectable hydrogel dressing prolonged the lifespan of dressing relying on self-healing ability and significantly promoted the in vivo wound healing process attributed to its multifunctional properties, meaning that they are excellent candidates for full-thickness skin wound healing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diabetes primes neutrophils to undergo NETosis, which impairs wound healing.

              Wound healing is impaired in diabetes, resulting in significant morbidity and mortality. Neutrophils are the main leukocytes involved in the early phase of healing. As part of their anti-microbial defense, neutrophils form extracellular traps (NETs) by releasing decondensed chromatin lined with cytotoxic proteins. NETs, however, can also induce tissue damage. Here we show that neutrophils isolated from type 1 and type 2 diabetic humans and mice were primed to produce NETs (a process termed NETosis). Expression of peptidylarginine deiminase 4 (PAD4, encoded by Padi4 in mice), an enzyme important in chromatin decondensation, was elevated in neutrophils from individuals with diabetes. When subjected to excisional skin wounds, wild-type (WT) mice produced large quantities of NETs in wounds, but this was not observed in Padi4(-/-) mice. In diabetic mice, higher levels of citrullinated histone H3 (H3Cit, a NET marker) were found in their wounds than in normoglycemic mice and healing was delayed. Wound healing was accelerated in Padi4(-/-) mice as compared to WT mice, and it was not compromised by diabetes. DNase 1, which disrupts NETs, accelerated wound healing in diabetic and normoglycemic WT mice. Thus, NETs impair wound healing, particularly in diabetes, in which neutrophils are more susceptible to NETosis. Inhibiting NETosis or cleaving NETs may improve wound healing and reduce NET-driven chronic inflammation in diabetes.
                Bookmark

                Author and article information

                Contributors
                Journal
                BSICCH
                Biomaterials Science
                Biomater. Sci.
                Royal Society of Chemistry (RSC)
                2047-4830
                2047-4849
                September 24 2019
                2019
                : 7
                : 10
                : 4230-4236
                Affiliations
                [1 ]Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
                [2 ]School of Biomedical Engineering
                [3 ]Sun Yat-sen University
                [4 ]Guangzhou
                [5 ]China
                [6 ]Guanghua School of Stomatology
                [7 ]Hospital of Stomatology
                [8 ]Guangdong Provincial Key Laboratory of Stomatology
                [9 ]Guangzhou 510055
                Article
                10.1039/C9BM00991D
                cdf6c850-28b7-4876-8dfc-1d508f09c2f0
                © 2019

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article