8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      N-Glycosylation of LRP6 by B3GnT2 Promotes Wnt/β-Catenin Signalling

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reception of Wnt signals by cells is predominantly mediated by Frizzled receptors in conjunction with a co-receptor, the latter being LRP6 or LRP5 for the Wnt/β-catenin signalling pathway. It is important that cells maintain precise control of receptor activation events in order to properly regulate Wnt/β-catenin signalling as aberrant signalling can result in disease in humans. Phosphorylation of the intracellular domain (ICD) of LRP6 is well known to regulate Wntβ-catenin signalling; however, less is known for regulatory post-translational modification events within the extracellular domain (ECD). Using a cell culture-based expression screen for functional regulators of LRP6, we identified a glycosyltransferase, B3GnT2-like, from a teleost fish (medaka) cDNA library, that modifies LRP6 and regulates Wnt/β-catenin signalling. We provide both gain-of-function and loss-of-function evidence that the single human homolog, B3GnT2, promotes extension of polylactosamine chains at multiple N-glycans on LRP6, thereby enhancing trafficking of LRP6 to the plasma membrane and promoting Wnt/β-catenin signalling. Our findings further highlight the importance of LRP6 as a regulatory hub in Wnt signalling and provide one of the few examples of how a specific glycosyltransferase appears to selectively target a signalling pathway component to alter cellular signalling events.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Fiji: an open-source platform for biological-image analysis.

          Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Global view of human protein glycosylation pathways and functions

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              From 2R to 3R: evidence for a fish-specific genome duplication (FSGD).

              An important mechanism for the evolution of phenotypic complexity, diversity and innovation, and the origin of novel gene functions is the duplication of genes and entire genomes. Recent phylogenomic studies suggest that, during the evolution of vertebrates, the entire genome was duplicated in two rounds (2R) of duplication. Later, approximately 350 mya, in the stem lineage of ray-finned (actinopterygian) fishes, but not in that of the land vertebrates, a third genome duplication occurred-the fish-specific genome duplication (FSGD or 3R), leading, at least initially, to up to eight copies of the ancestral deuterostome genome. Therefore, the sarcopterygian (lobe-finned fishes and tetrapods) genome possessed originally only half as many genes compared to the derived fishes, just like the most-basal and species-poor lineages of extant fishes that diverged from the fish stem lineage before the 3R duplication. Most duplicated genes were secondarily lost, yet some evolved new functions. The genomic complexity of the teleosts might be the reason for their evolutionary success and astounding biological diversity.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                CELLC6
                Cells
                Cells
                MDPI AG
                2073-4409
                March 2023
                March 10 2023
                : 12
                : 6
                : 863
                Article
                10.3390/cells12060863
                cde32559-2b60-4ae4-870b-31044ae4c3de
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article