25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autophagy in endothelial cells and tumor angiogenesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In mammalian cells, autophagy is the major pathway for the degradation and recycling of obsolete and potentially noxious cytoplasmic materials, including proteins, lipids, and whole organelles, through the lysosomes. Autophagy maintains cellular and tissue homeostasis and provides a mechanism to adapt to extracellular cues and metabolic stressors. Emerging evidence unravels a critical function of autophagy in endothelial cells (ECs), the major components of the blood vasculature, which delivers nutrients and oxygen to the parenchymal tissue. EC-intrinsic autophagy modulates the response of ECs to various metabolic stressors and has a fundamental role in redox homeostasis and EC plasticity. In recent years moreover, genetic evidence suggests that autophagy regulates pathological angiogenesis, a hallmark of solid tumors. In the hypoxic, nutrient-deprived, and pro-angiogenic tumor microenvironment, heightened autophagy in the blood vessels is emerging as a critical mechanism enabling ECs to dynamically accommodate their higher bioenergetics demands to the extracellular environment and connect with other components of the tumor stroma through paracrine signaling. In this review, we provide an overview of the major cellular mechanisms regulated by autophagy in ECs and discuss their potential role in tumor angiogenesis, tumor growth, and response to anticancer therapy.

          Abstract

          Vascular homeostasis relies on the proper behavior of endothelial cells (ECs). Emerging evidence indicate a critical role of autophagy, a vesicular process for lysosomal degradation of cytoplasmic content, in EC biology. While EC-intrinsic autophagy promotes EC function and quiescent state through redox homeostasis and possibly metabolic control, a role for EC-associated autophagy in cancer seems more complex.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular regulation of vessel maturation.

          The maturation of nascent vasculature, formed by vasculogenesis or angiogenesis, requires recruitment of mural cells, generation of an extracellular matrix and specialization of the vessel wall for structural support and regulation of vessel function. In addition, the vascular network must be organized so that all the parenchymal cells receive adequate nutrients. All of these processes are orchestrated by physical forces as well as by a constellation of ligands and receptors whose spatio-temporal patterns of expression and concentration are tightly regulated. Inappropriate levels of these physical forces or molecules produce an abnormal vasculature--a hallmark of various pathologies. Normalization of the abnormal vasculature can facilitate drug delivery to tumors and formation of a mature vasculature can help realize the promise of therapeutic angiogenesis and tissue engineering.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endocytosis and signalling: intertwining molecular networks.

            Cell signalling and endocytic membrane trafficking have traditionally been viewed as distinct processes. Although our present understanding is incomplete and there are still great controversies, it is now recognized that these processes are intimately and bidirectionally linked in animal cells. Indeed, many recent examples illustrate how endocytosis regulates receptor signalling (including signalling from receptor tyrosine kinases and G protein-coupled receptors) and, conversely, how signalling regulates the endocytic pathway. The mechanistic and functional principles that underlie the relationship between signalling and endocytosis in cell biology are becoming increasingly evident across many systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antiangiogenic therapy in oncology: current status and future directions.

              Angiogenesis, the formation of new blood vessels from pre-existing vessels, has been validated as a target in several tumour types through randomised trials, incorporating vascular endothelial growth factor (VEGF) pathway inhibitors into the therapeutic armoury. Although some tumours such as renal cell carcinoma, ovarian and cervical cancers, and pancreatic neuroendocrine tumours are sensitive to these drugs, others such as prostate cancer, pancreatic adenocarcinoma, and melanoma are resistant. Even when drugs have yielded significant results, improvements in progression-free survival, and, in some cases, overall survival, are modest. Thus, a crucial issue in development of these drugs is the search for predictive biomarkers-tests that predict which patients will, and will not, benefit before initiation of therapy. Development of biomarkers is important because of the need to balance efficacy, toxicity, and cost. Novel combinations of these drugs with other antiangiogenics or other classes of drugs are being developed, and the appreciation that these drugs have immunomodulatory and other modes of action will lead to combination regimens that capitalise on these newly understood mechanisms.
                Bookmark

                Author and article information

                Contributors
                +32 16 330650 , patrizia.agostinis@kuleuven.be
                Journal
                Cell Death Differ
                Cell Death Differ
                Cell Death and Differentiation
                Nature Publishing Group UK (London )
                1350-9047
                1476-5403
                28 January 2019
                28 January 2019
                April 2019
                : 26
                : 4
                : 665-679
                Affiliations
                ISNI 0000 0001 0668 7884, GRID grid.5596.f, Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, , KU Leuven University of Leuven, ; Leuven, Belgium
                Article
                287
                10.1038/s41418-019-0287-8
                6460396
                30692642
                cdd42e66-e544-4a9d-80a3-62b0c7f89080
                © ADMC Associazione Differenziamento e Morte Cellulare 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 November 2018
                : 7 January 2019
                : 10 January 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100003130, Fonds Wetenschappelijk Onderzoek (Research Foundation Flanders);
                Funded by: FundRef https://doi.org/10.13039/501100005026, Stichting Tegen Kanker (Belgian Foundation Against Cancer);
                Categories
                Review Article
                Custom metadata
                © ADMC Associazione Differenziamento e Morte Cellulare 2019

                Cell biology
                Cell biology

                Comments

                Comment on this article