4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Degradation Process of Typical Neonicotinoid Insecticides in Tidal Streams in Subtropical Cities: A Case Study of the Wuchong Stream, South China

      , , , ,
      Toxics
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neonicotinoid insecticides (NEOs) are commonly used to prevent unwanted insects in urban fields. Degradation processes have been one of the important environmental behaviors of NEOs in an aquatic environment. In this research, hydrolysis, biodegradation, and photolysis processes of four typical NEOs (i.e., thiacloprid (THA), clothianidin (CLO), acetamiprid (ACE), and imidacloprid (IMI)) were examined through the adoption of response surface methodology–central composite design (RSM-CCD) for an urban tidal stream in South China. The influences of multiple environmental parameters and concentration levels on the three degradation processes of these NEOs were then evaluated. The results indicated that the three degradation processes of the typical NEOs followed a pseudo-first-order reaction kinetics model. The primary degradation process of the NEOs were hydrolysis and photolysis processes in the urban stream. The hydrolysis degradation rate of THA was the highest (1.97 × 10−5 s−1), and that of CLO was the lowest (1.28 × 10−5 s−1). The temperature of water samples was the main environmental factor influencing the degradation processes of these NEOs in the urban tidal stream. Salinity and humic acids could inhibit the degradation processes of the NEOs. Under the influence of extreme climate events, the biodegradation processes of these typical NEOs could be suppressed, and other degradation processes could be further accelerated. In addition, extreme climate events could pose severe challenges to the migration and degradation process simulation of NEOs.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review.

          Neonicotinoids, broad-spectrum systemic insecticides, are the fastest growing class of insecticides worldwide and are now registered for use on hundreds of field crops in over 120 different countries. The environmental profile of this class of pesticides indicate that they are persistent, have high leaching and runoff potential, and are highly toxic to a wide range of invertebrates. Therefore, neonicotinoids represent a significant risk to surface waters and the diverse aquatic and terrestrial fauna that these ecosystems support. This review synthesizes the current state of knowledge on the reported concentrations of neonicotinoids in surface waters from 29 studies in 9 countries world-wide in tandem with published data on their acute and chronic toxicity to 49 species of aquatic insects and crustaceans spanning 12 invertebrate orders. Strong evidence exists that water-borne neonicotinoid exposures are frequent, long-term and at levels (geometric means=0.13μg/L (averages) and 0.63μg/L (maxima)) which commonly exceed several existing water quality guidelines. Imidacloprid is by far the most widely studied neonicotinoid (66% of the 214 toxicity tests reviewed) with differences in sensitivity among aquatic invertebrate species ranging several orders of magnitude; other neonicotinoids display analogous modes of action and similar toxicities, although comparative data are limited. Of the species evaluated, insects belonging to the orders Ephemeroptera, Trichoptera and Diptera appear to be the most sensitive, while those of Crustacea (although not universally so) are less sensitive. In particular, the standard test species Daphnia magna appears to be very tolerant, with 24-96hour LC50 values exceeding 100,000μg/L (geometric mean>44,000μg/L), which is at least 2-3 orders of magnitude higher than the geometric mean of all other invertebrate species tested. Overall, neonicotinoids can exert adverse effects on survival, growth, emergence, mobility, and behavior of many sensitive aquatic invertebrate taxa at concentrations at or below 1μg/L under acute exposure and 0.1μg/L for chronic exposure. Using probabilistic approaches (species sensitivity distributions), we recommend here that ecological thresholds for neonicotinoid water concentrations need to be below 0.2μg/L (short-term acute) or 0.035μg/L (long-term chronic) to avoid lasting effects on aquatic invertebrate communities. The application of safety factors may still be warranted considering potential issues of slow recovery, additive or synergistic effects and multiple stressors that can occur in the field. Our analysis revealed that 81% (22/27) and 74% (14/19) of global surface water studies reporting maximum and average individual neonicotinoid concentrations respectively, exceeded these thresholds of 0.2 and 0.035μg/L. Therefore, it appears that environmentally relevant concentrations of neonicotinoids in surface waters worldwide are well within the range where both short- and long-term impacts on aquatic invertebrate species are possible over broad spatial scales.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Overview of the status and global strategy for neonicotinoids.

            In recent years, neonicotinoid insecticides have been the fastest growing class of insecticides in modern crop protection, with widespread use against a broad spectrum of sucking and certain chewing pests. As potent agonists, they act selectively on insect nicotinic acetylcholine receptors (nAChRs), their molecular target site. The discovery of neonicotinoids can be considered as a milestone in insecticide research and greatly facilitates the understanding of functional properties of the insect nAChRs. In this context, the crystal structure of the acetylcholine-binding proteins provides the theoretical foundation for designing homology models of the corresponding receptor ligand binding domains within the nAChRs, a useful basis for virtual screening of chemical libraries and rational design of novel insecticides acting on these practically relevant channels. Because of the relatively low risk for nontarget organisms and the environment, the high target specificity of neonicotinoid insecticides, and their versatility in application methods, this important class has to be maintained globally for integrated pest management strategies and insect resistance management programs. Innovative concepts for life-cycle management, jointly with the introduction of generic products, have made neonicotinoids the most important chemical class for the insecticide market.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impacts of climate change on surface water quality in relation to drinking water production.

              Besides climate change impacts on water availability and hydrological risks, the consequences on water quality is just beginning to be studied. This review aims at proposing a synthesis of the most recent existing interdisciplinary literature on the topic. After a short presentation about the role of the main factors (warming and consequences of extreme events) explaining climate change effects on water quality, the focus will be on two main points. First, the impacts on water quality of resources (rivers and lakes) modifying parameters values (physico-chemical parameters, micropollutants and biological parameters) are considered. Then, the expected impacts on drinking water production and quality of supplied water are discussed. The main conclusion which can be drawn is that a degradation trend of drinking water quality in the context of climate change leads to an increase of at risk situations related to potential health impact.
                Bookmark

                Author and article information

                Journal
                TOXIC8
                Toxics
                Toxics
                MDPI AG
                2305-6304
                March 2023
                February 22 2023
                : 11
                : 3
                : 203
                Article
                10.3390/toxics11030203
                cda36edb-8333-4fe4-9a45-5530eea1c6bd
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article