6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Design, Synthesis, and Herbicidal Activity Evaluation of Novel Aryl-Naphthyl Methanone Derivatives

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          4-Hydroxyphenylpyruvate dioxygenase (HPPD) is one of the most vital targets for herbicides discovery. In search for HPPD inhibitors with novel scaffolds, a series of aryl-naphthyl methanone derivatives have been designed and synthesized through alkylation and Friedel-Crafts acylation reactions. The bioassay indicated some of these compounds displayed preferable herbicidal activity at the rate of 0.75 mmol/m 2 by post-emergence application, in which compound 3h displayed the best herbicidal activity. The molecular docking showed that compound 3h could bind well to the active site of the AtHPPD. This study shows that aryl-naphthyl methanone derivatives could be a potential lead structure for further development of novel herbicides.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Mesotrione: a new selective herbicide for use in maize.

          Mesotrione is a new herbicide being developed for the selective pre- and post-emergence control of a wide range of broad-leaved and grass weeds in maize (Zea mays). It is a member of the benzoylcyclohexane-1,3-dione family of herbicides, which are chemically derived from a natural phytotoxin obtained from the Californian bottlebrush plant, Callistemon citrinus. The compound acts by competitive inhibition of the enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD), a component of the biochemical pathway that converts tyrosine to plastoquinone and alpha-tocopherol. Mesotrione is an extremely potent inhibitor of HPPD from Arabidopsis thaliana, with a Ki value of c 6-18 pM. It is rapidly taken up by weed species following foliar application, and is distributed within the plants by both acropetal and basipetal movement. Maize is tolerant to mesotrione as a consequence of selective metabolism by the crop plant. Slower uptake of mesotrione, relative to susceptible weed species, may also contribute to its utility as a selective herbicide for use in maize.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            4-Hydroxyphenylpyruvate dioxygenase.

            R. Moran (2005)
            4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an Fe(II)-dependent, non-heme oxygenase that catalyzes the conversion of 4-hydroxyphenylpyruvate to homogentisate. This reaction involves decarboxylation, substituent migration and aromatic oxygenation in a single catalytic cycle. HPPD is a member of the alpha-keto acid dependent oxygenases that typically require an alpha-keto acid (almost exclusively alpha-ketoglutarate) and molecular oxygen to either oxygenate or oxidize a third molecule. As an exception in this class of enzymes HPPD has only two substrates, does not use alpha-ketoglutarate, and incorporates both atoms of dioxygen into the aromatic product, homogentisate. The tertiary structure of the enzyme would suggest that its mechanism converged with that of other alpha-keto acid enzymes from an extradiol dioxygenase progenitor. The transformation catalyzed by HPPD has both agricultural and therapeutic significance. HPPD catalyzes the second step in the pathway for the catabolism of tyrosine, that is common to essentially all aerobic forms of life. In plants this pathway has an anabolic branch from homogentisate that forms essential isoprenoid redox cofactors such as plastoquinone and tocopherol. Naturally occurring multi-ketone molecules act as allelopathic agents by inhibiting HPPD and preventing the production of homogentisate and hence required redox cofactors. This has been the basis for the development of a range of very effective herbicides that are currently used commercially. In humans, deficiencies of specific enzymes of the tyrosine catabolism pathway give rise to a number of severe metabolic disorders. Interestingly, HPPD inhibitor/herbicide molecules act also as therapeutic agents for a number of debilitating and lethal inborn defects in tyrosine catabolism by preventing the accumulation of toxic metabolites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Herbicidal 4-hydroxyphenylpyruvate dioxygenase inhibitors--a review of the triketone chemistry story from a Syngenta perspective.

              A review, outlining the origins and subsequent development of the triketone class of herbicidal 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Chem
                Front Chem
                Front. Chem.
                Frontiers in Chemistry
                Frontiers Media S.A.
                2296-2646
                22 January 2019
                2019
                : 7
                : 2
                Affiliations
                Department of Applied Chemistry, College of Science, Northeast Agricultural University , Harbin, China
                Author notes

                Edited by: Simone Brogi, Università Degli Studi di Siena, Italy

                Reviewed by: Konstantinos M. Kasiotis, Benaki Phytopathological Institute, Greece; Francisco Solano, University of Murcia, Spain; Ning Ma, Tianjin University, China

                *Correspondence: Fei Ye yefei@ 123456neau.edu.cn

                This article was submitted to Medicinal and Pharmaceutical Chemistry, a section of the journal Frontiers in Chemistry

                Article
                10.3389/fchem.2019.00002
                6349756
                cd7932d0-f776-434f-935a-2cb701b740d3
                Copyright © 2019 Fu, Wang, Wang, Kang, Gao, Zhao and Ye.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 August 2018
                : 03 January 2019
                Page count
                Figures: 5, Tables: 3, Equations: 0, References: 29, Pages: 10, Words: 6785
                Categories
                Chemistry
                Original Research

                4-hydroxyphenylpyruvate dioxygenase,design,synthesis,aryl-naphthyl methanone,herbicidal activity

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content771

                Cited by11

                Most referenced authors302