19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Oxytocin enhances brain function in children with autism

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Following intranasal administration of oxytocin (OT), we measured, via functional MRI, changes in brain activity during judgments of socially (Eyes) and nonsocially (Vehicles) meaningful pictures in 17 children with high-functioning autism spectrum disorder (ASD). OT increased activity in the striatum, the middle frontal gyrus, the medial prefrontal cortex, the right orbitofrontal cortex, and the left superior temporal sulcus. In the striatum, nucleus accumbens, left posterior superior temporal sulcus, and left premotor cortex, OT increased activity during social judgments and decreased activity during nonsocial judgments. Changes in salivary OT concentrations from baseline to 30 min postadministration were positively associated with increased activity in the right amygdala and orbitofrontal cortex during social vs. nonsocial judgments. OT may thus selectively have an impact on salience and hedonic evaluations of socially meaningful stimuli in children with ASD, and thereby facilitate social attunement. These findings further the development of a neurophysiological systems-level understanding of mechanisms by which OT may enhance social functioning in children with ASD.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Oxytocin, vasopressin, and the neurogenetics of sociality.

          There is growing evidence that the neuropeptides oxytocin and vasopressin modulate complex social behavior and social cognition. These ancient neuropeptides display a marked conservation in gene structure and expression, yet diversity in the genetic regulation of their receptors seems to underlie natural variation in social behavior, both between and within species. Human studies are beginning to explore the roles of these neuropeptides in social cognition and behavior and suggest that variation in the genes encoding their receptors may contribute to variation in human social behavior by altering brain function. Understanding the neurobiology and neurogenetics of social cognition and behavior has important implications, both clinically and for society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxytocin improves "mind-reading" in humans.

            The ability to "read the mind" of other individuals, that is, to infer their mental state by interpreting subtle social cues, is indispensable in human social interaction. The neuropeptide oxytocin plays a central role in social approach behavior in nonhuman mammals. In a double-blind, placebo-controlled, within-subject design, 30 healthy male volunteers were tested for their ability to infer the affective mental state of others using the Reading the Mind in the Eyes Test (RMET) after intranasal administration of 24 IU oxytocin. Oxytocin improved performance on the RMET compared with placebo. This effect was pronounced for difficult compared with easy items. Our data suggest that oxytocin improves the ability to infer the mental state of others from social cues of the eye region. Oxytocin might play a role in the pathogenesis of autism spectrum disorder, which is characterized by severe social impairment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior.

              Social neuroscience is rapidly exploring the complex territory between perception and action where recognition, value, and meaning are instantiated. This review follows the trail of research on oxytocin and vasopressin as an exemplar of one path for exploring the "dark matter" of social neuroscience. Studies across vertebrate species suggest that these neuropeptides are important for social cognition, with gender- and steroid-dependent effects. Comparative research in voles yields a model based on interspecies and intraspecies variation of the geography of oxytocin receptors and vasopressin V1a receptors in the forebrain. Highly affiliative species have receptors in brain circuits related to reward or reinforcement. The neuroanatomical distribution of these receptors may be guided by variations in the regulatory regions of their respective genes. This review describes the promises and problems of extrapolating these findings to human social cognition, with specific reference to the social deficits of autism. (c) 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                December 24 2013
                December 24 2013
                December 02 2013
                December 24 2013
                : 110
                : 52
                : 20953-20958
                Article
                10.1073/pnas.1312857110
                3876263
                24297883
                cd695286-f66b-49de-b56f-3fc7c71c2484
                © 2013
                History

                Comments

                Comment on this article