12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ChatGPT Performance in Diagnostic Clinical Microbiology Laboratory-Oriented Case Scenarios

      research-article
      1 , 2 , , 1 , 1
      ,
      Cureus
      Cureus
      healthcare practice, ai chatbot gpt-4, applications of ai, medical and diagnostic microbiology, clinical laboratory

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Artificial intelligence (AI)-based tools can reshape healthcare practice. This includes ChatGPT which is considered among the most popular AI-based conversational models. Nevertheless, the performance of different versions of ChatGPT needs further evaluation in different settings to assess its reliability and credibility in various healthcare-related tasks. Therefore, the current study aimed to assess the performance of the freely available ChatGPT-3.5 and the paid version ChatGPT-4 in 10 different diagnostic clinical microbiology case scenarios.

          Methods: The current study followed the METRICS (Model, Evaluation, Timing/Transparency, Range/Randomization, Individual factors, Count, Specificity of the prompts/language) checklist for standardization of the design and reporting of AI-based studies in healthcare. The models tested on December 3, 2023 included ChatGPT-3.5 and ChatGPT-4 and the evaluation of the ChatGPT-generated content was based on the CLEAR tool (Completeness, Lack of false information, Evidence support, Appropriateness, and Relevance) assessed on a 5-point Likert scale with a range of the CLEAR scores of 1-5. ChatGPT output was evaluated by two raters independently and the inter-rater agreement was based on the Cohen’s κ statistic. Ten diagnostic clinical microbiology laboratory case scenarios were created in the English language by three microbiologists at diverse levels of expertise following an internal discussion of common cases observed in Jordan. The range of topics included bacteriology, mycology, parasitology, and virology cases. Specific prompts were tailored based on the CLEAR tool and a new session was selected following prompting each case scenario.

          Results: The Cohen’s κ values for the five CLEAR items were 0.351-0.737 for ChatGPT-3.5 and 0.294-0.701 for ChatGPT-4 indicating fair to good agreement and suitability for analysis. Based on the average CLEAR scores, ChatGPT-4 outperformed ChatGPT-3.5 (mean: 2.64±1.06 vs. 3.21±1.05,  P=.012, t-test). The performance of each model varied based on the CLEAR items, with the lowest performance for the “Relevance” item (2.15±0.71 for ChatGPT-3.5 and 2.65±1.16 for ChatGPT-4). A statistically significant difference upon assessing the performance per each CLEAR item was only seen in ChatGPT-4 with the best performance in “Completeness”, “Lack of false information”, and “Evidence support” ( P=0.043). The lowest level of performance for both models was observed with antimicrobial susceptibility testing (AST) queries while the highest level of performance was seen in bacterial and mycologic identification.

          Conclusions: Assessment of ChatGPT performance across different diagnostic clinical microbiology case scenarios showed that ChatGPT-4 outperformed ChatGPT-3.5. The performance of ChatGPT demonstrated noticeable variability depending on the specific topic evaluated. A primary shortcoming of both ChatGPT models was the tendency to generate irrelevant content lacking the needed focus. Although the overall ChatGPT performance in these diagnostic microbiology case scenarios might be described as “above average” at best, there remains a significant potential for improvement, considering the identified limitations and unsatisfactory results in a few cases.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          The potential for artificial intelligence in healthcare

          The complexity and rise of data in healthcare means that artificial intelligence (AI) will increasingly be applied within the field. Several types of AI are already being employed by payers and providers of care, and life sciences companies. The key categories of applications involve diagnosis and treatment recommendations, patient engagement and adherence, and administrative activities. Although there are many instances in which AI can perform healthcare tasks as well or better than humans, implementation factors will prevent large-scale automation of healthcare professional jobs for a considerable period. Ethical issues in the application of AI to healthcare are also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            ChatGPT Utility in Healthcare Education, Research, and Practice: Systematic Review on the Promising Perspectives and Valid Concerns

            ChatGPT is an artificial intelligence (AI)-based conversational large language model (LLM). The potential applications of LLMs in health care education, research, and practice could be promising if the associated valid concerns are proactively examined and addressed. The current systematic review aimed to investigate the utility of ChatGPT in health care education, research, and practice and to highlight its potential limitations. Using the PRIMSA guidelines, a systematic search was conducted to retrieve English records in PubMed/MEDLINE and Google Scholar (published research or preprints) that examined ChatGPT in the context of health care education, research, or practice. A total of 60 records were eligible for inclusion. Benefits of ChatGPT were cited in 51/60 (85.0%) records and included: (1) improved scientific writing and enhancing research equity and versatility; (2) utility in health care research (efficient analysis of datasets, code generation, literature reviews, saving time to focus on experimental design, and drug discovery and development); (3) benefits in health care practice (streamlining the workflow, cost saving, documentation, personalized medicine, and improved health literacy); and (4) benefits in health care education including improved personalized learning and the focus on critical thinking and problem-based learning. Concerns regarding ChatGPT use were stated in 58/60 (96.7%) records including ethical, copyright, transparency, and legal issues, the risk of bias, plagiarism, lack of originality, inaccurate content with risk of hallucination, limited knowledge, incorrect citations, cybersecurity issues, and risk of infodemics. The promising applications of ChatGPT can induce paradigm shifts in health care education, research, and practice. However, the embrace of this AI chatbot should be conducted with extreme caution considering its potential limitations. As it currently stands, ChatGPT does not qualify to be listed as an author in scientific articles unless the ICMJE/COPE guidelines are revised or amended. An initiative involving all stakeholders in health care education, research, and practice is urgently needed. This will help to set a code of ethics to guide the responsible use of ChatGPT among other LLMs in health care and academia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Artificial intelligence in healthcare: transforming the practice of medicine.

              Artificial intelligence (AI) is a powerful and disruptive area of computer science, with the potential to fundamentally transform the practice of medicine and the delivery of healthcare. In this review article, we outline recent breakthroughs in the application of AI in healthcare, describe a roadmap to building effective, reliable and safe AI systems, and discuss the possible future direction of AI augmented healthcare systems.
                Bookmark

                Author and article information

                Journal
                Cureus
                Cureus
                2168-8184
                Cureus
                Cureus (Palo Alto (CA) )
                2168-8184
                16 December 2023
                December 2023
                : 15
                : 12
                : e50629
                Affiliations
                [1 ] Department of Pathology, Microbiology and Forensic Medicine, The University of Jordan, School of Medicine, Amman, JOR
                [2 ] Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman, JOR
                Author notes
                Article
                10.7759/cureus.50629
                10725273
                38107211
                cd5a82b2-7386-4bd1-8d43-d9bf9b4d97b1
                Copyright © 2023, Sallam et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 16 December 2023
                Categories
                Pathology
                Infectious Disease
                Healthcare Technology

                healthcare practice,ai chatbot gpt-4,applications of ai,medical and diagnostic microbiology,clinical laboratory

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content107

                Cited by9

                Most referenced authors323