31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Using a Mathematical Modeling To Simulate Pharmacokinetics and Urinary Glucose Excretion of Luseogliflozin and Explore the Role of SGLT1/2 in Renal Glucose Reabsorption

      research-article
      , , § ,
      ACS Omega
      American Chemical Society

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          (1) Purpose: To develop a mathematical model combining physiologically based pharmacokinetic and urinary glucose excretion (PBPK-UGE) to simultaneously predict pharmacokinetic (PK) and UGE changes of luseogliflozin (LUS) as well as to explore the role of sodium-glucose cotransporters (SGLT1 and SGLT2) in renal glucose reabsorption (RGR) in humans. (2) Methods: The PBPK-UGE model was built using physicochemical and biochemical properties, binding kinetics data, affinity to SGLTs for glucose, and physiological parameters of renal tubules. (3) Results: The simulations using this model clarified that SGLT1/2 contributed 15 and 85%, respectively, to RGR in the absence of LUS. However, in the presence of LUS, the contribution proportion of SGLT1 rose to 52–76% in healthy individuals and 55–83% in T2DM patients, and that of SGLT2 reduced to 24–48 and 17–45%, respectively. Furthermore, this model supported the underlying mechanism that only 23–40% inhibition of the total RGR with 5 mg of LUS is resulted from SGLT1’s compensatory effect and the reabsorption activity of unbound SGLT2. (4) Conclusion: This PBPK-UGE model can predict PK and UGE in healthy individuals and T2DM patients and can also analyze the contribution of SGLT1/2 to RGR with and without LUS.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Physiological Parameter Values for Physiologically Based Pharmacokinetic Models

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SGLT2 mediates glucose reabsorption in the early proximal tubule.

            Mutations in the gene encoding for the Na(+)-glucose co-transporter SGLT2 (SLC5A2) associate with familial renal glucosuria, but the role of SGLT2 in the kidney is incompletely understood. Here, we determined the localization of SGLT2 in the mouse kidney and generated and characterized SGLT2-deficient mice. In wild-type (WT) mice, immunohistochemistry localized SGLT2 to the brush border membrane of the early proximal tubule. Sglt2(-/-) mice had glucosuria, polyuria, and increased food and fluid intake without differences in plasma glucose concentrations, GFR, or urinary excretion of other proximal tubular substrates (including amino acids) compared with WT mice. SGLT2 deficiency did not associate with volume depletion, suggested by similar body weight, BP, and hematocrit; however, plasma renin concentrations were modestly higher and plasma aldosterone levels were lower in Sglt2(-/-) mice. Whole-kidney clearance studies showed that fractional glucose reabsorption was significantly lower in Sglt2(-/-) mice compared with WT mice and varied in Sglt2(-/-) mice between 10 and 60%, inversely with the amount of filtered glucose. Free-flow micropuncture revealed that for early proximal collections, 78 ± 6% of the filtered glucose was reabsorbed in WT mice compared with no reabsorption in Sglt2(-/-) mice. For late proximal collections, fractional glucose reabsorption was 93 ± 1% in WT and 21 ± 6% in Sglt2(-/-) mice, respectively. These results demonstrate that SGLT2 mediates glucose reabsorption in the early proximal tubule and most of the glucose reabsorption by the kidney, overall. This mouse model mimics and explains the glucosuric phenotype of individuals carrying SLC5A2 mutations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2.

              The human Na(+)/D-glucose cotransporter 2 (hSGLT2) is believed to be responsible for the bulk of glucose reabsorption in the kidney proximal convoluted tubule. Since blocking reabsorption increases urinary glucose excretion, hSGLT2 has become a novel drug target for Type 2 diabetes treatment. Glucose transport by hSGLT2 was studied at 37°C in human embryonic kidney 293T cells using whole cell patch-clamp electrophysiology. We compared hSGLT2 with hSGLT1, the transporter in the straight proximal tubule (S3 segment). hSGLT2 transports with surprisingly similar glucose affinity and lower concentrative power than hSGLT1: Na(+)/D-glucose cotransport by hSGLT2 was electrogenic with apparent glucose and Na(+) affinities of 5 and 25 mM, and a Na(+):glucose coupling ratio of 1; hSGLT1 affinities were 2 and 70 mM and coupling ratio of 2. Both proteins showed voltage-dependent steady-state transport; however, unlike hSGLT1, hSGLT2 did not exhibit detectable pre-steady-state currents in response to rapid jumps in membrane voltage. D-Galactose was transported by both proteins, but with very low affinity by hSGLT2 (≥100 vs. 6 mM). β-D-Glucopyranosides were either substrates or blockers. Phlorizin exhibited higher affinity with hSGLT2 (K(i) 11 vs. 140 nM) and a lower Off-rate (0.03 vs. 0.2 s⁻¹) compared with hSGLT1. These studies indicate that, in the early proximal tubule, hSGLT2 works at 50% capacity and becomes saturated only when glucose is ≥35 mM. Furthermore, results on hSGLT1 suggest it may play a significant role in the reabsorption of filtered glucose in the late proximal tubule. Our electrophysiological study provides groundwork for a molecular understanding of how hSGLT inhibitors affect renal glucose reabsorption.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                15 December 2022
                27 December 2022
                : 7
                : 51
                : 48427-48437
                Affiliations
                []Pharnexcloud Digital Technology Co., Ltd. , Chengdu, Sichuan610093, China
                []Zhongcai Health (Beijing) Biological Technology Development Co., Ltd. , Beijing101500, China
                [§ ]North China Electric Power University Hospital , Beijing102206, China
                Author notes
                [* ]Email: rjw@ 123456ncepu.edu.cn . Tel.: +86 18501256515.
                Author information
                https://orcid.org/0000-0002-5701-4919
                Article
                10.1021/acsomega.2c06483
                9798748
                36591124
                cd46c3f8-4d9f-4da3-a6e5-8b393f645884
                © 2022 The Authors. Published by American Chemical Society

                Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 17 October 2022
                : 06 December 2022
                Categories
                Article
                Custom metadata
                ao2c06483
                ao2c06483

                Comments

                Comment on this article