Tropical cyclones do not form easily near the equator but can intensify rapidly, leaving little time for preparation. We investigate the number of near-equatorial (originating between 5°N and 11°N) tropical cyclones over the north Indian Ocean during post-monsoon season (October to December) over the past 60 years. The study reveals a marked 43% decline in the number of such cyclones in recent decades (1981–2010) compared to earlier (1951–1980). Here, we show this decline in tropical cyclone frequency is primarily due to the weakened low-level vorticity modulated by the Pacific Decadal Oscillation (PDO) and increased vertical wind shear. In the presence of low-latitude basin-wide warming and a favorable phase of the PDO, both the intensity and frequency of such cyclones are expected to increase. Such dramatic and unique changes in tropical cyclonic activity due to the interplay between natural variability and climate change call for appropriate planning and mitigation strategies.
The north Indian Ocean is a hotbed for Low Latitude Cyclones (LLCs; originating between 5°N and 11°N). This study finds a remarkable decline in the frequency of LLCs in recent decades modulated by the remote influence of Pacific Decadal Oscillation.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.