5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In-Vitro Application of a Qatari Burkholderia cepacia strain (QBC03) in the Biocontrol of Mycotoxigenic Fungi and in the Reduction of Ochratoxin A biosynthesis by Aspergillus carbonarius

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mycotoxins are secondary metabolites produced by certain filamentous fungi, causing human and animal health issues upon the ingestion of contaminated food and feed. Among the safest approaches to the control of mycotoxigenic fungi and mycotoxin detoxification is the application of microbial biocontrol agents. Burkholderia cepacia is known for producing metabolites active against a broad number of pathogenic fungi. In this study, the antifungal potential of a Qatari strain of Burkholderia cepacia (QBC03) was explored. QBC03 exhibited antifungal activity against a wide range of mycotoxigenic, as well as phytopathogenic, fungal genera and species. The QBC03 culture supernatant significantly inhibited the growth of Aspergillus carbonarius, Fusarium culmorum and Penicillium verrucosum in PDA medium, as well as A. carbonarius and P. verrucosum biomass in PDB medium. The QBC03 culture supernatant was found to dramatically reduce the synthesis of ochratoxin A (OTA) by A. carbonarius, in addition to inducing mycelia malformation. The antifungal activity of QBC03’s culture extract was retained following thermal treatment at 100 °C for 30 min. The findings of the present study advocate that QBC03 is a suitable biocontrol agent against toxigenic fungi, due to the inhibitory activity of its thermostable metabolites.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Strategies to prevent mycotoxin contamination of food and animal feed: a review.

          Mycotoxins are fungal secondary metabolites that have been associated with severe toxic effects to vertebrates produced by many important phytopathogenic and food spoilage fungi including Aspergillus, Penicillium, Fusarium, and Alternaria species. The contamination of foods and animal feeds with mycotoxins is a worldwide problem. We reviewed various control strategies to prevent the growth of mycotoxigenic fungi as well as to inhibit mycotoxin biosynthesis including pre-harvest (resistance varieties, field management and the use of biological and chemical agents), harvest management, and post-harvest (improving of drying and storage conditions, the use of natural and chemical agents, and irradiation) applications. While much work in this area has been performed on the most economically important mycotoxins, aflatoxin B(1) and ochratoxin A much less information is available on other mycotoxins such as trichothecenes, fumonisin B(1), zearalenone, citrinin, and patulin. In addition, physical, chemical, and biological detoxification methods used to prevent exposure to the toxic and carcinogenic effect of mycotoxins are discussed. Finally, dietary strategies, which are one of the most recent approaches to counteract the mycotoxin problem with special emphasis on in vivo and in vitro efficacy of several of binding agents (activated carbons, hydrated sodium calcium aluminosilicate, bentonite, zeolites, and lactic acid bacteria) have also been reviewed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mycotoxins and their effects on human and animal health

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Comparative Ochratoxin Toxicity: A Review of the Available Data

              Ochratoxins are a group of mycotoxins produced by a variety of moulds. Ochratoxin A (OTA), the most prominent member of this toxin family, was first described by van der Merwe et al. in Nature in 1965. Dietary exposure to OTA represents a serious health issue and has been associated with several human and animal diseases including poultry ochratoxicosis, porcine nephropathy, human endemic nephropathies and urinary tract tumours in humans. More than 30 years ago, OTA was shown to be carcinogenic in rodents and since then extensive research has been performed in order to investigate its mode of action, however, this is still under debate. OTA is regarded as the most toxic family member, however, other ochratoxins or their metabolites and, in particular, ochratoxin mixtures or combinations with other mycotoxins may represent serious threats to human and animal health. This review summarises and evaluates current knowledge about the differential and comparative toxicity of the ochratoxin group.
                Bookmark

                Author and article information

                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                02 December 2019
                December 2019
                : 11
                : 12
                : 700
                Affiliations
                [1 ]Department of Biological & Environmental Sciences, College of Arts & Sciences, Qatar University, Doha P.O. Box 2713, Qatar; rz1604991@ 123456student.qu.edu.qa (R.Z.); zahoor@ 123456qu.edu.qa (Z.U.-H.); ralthani@ 123456qu.edu.qa (R.A.-T.)
                [2 ]Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; qmigheli@ 123456uniss.it
                Author notes
                [* ]Correspondence: samirjaoua@ 123456qu.edu.qa ; Tel.: +974-44034536
                Author information
                https://orcid.org/0000-0002-2459-5833
                https://orcid.org/0000-0002-8819-131X
                Article
                toxins-11-00700
                10.3390/toxins11120700
                6950548
                31810315
                cd1e8d05-3e3b-4f12-b2d6-4375502039e3
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 October 2019
                : 26 November 2019
                Categories
                Article

                Molecular medicine
                ochratoxin a,biological control,qatari microflora,burkholderia cepacia,thermostability

                Comments

                Comment on this article