31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Motility, morphology and phylogeny of the plasmodial worm, Ceratomyxa vermiformis n. sp. (Cnidaria: Myxozoa: Myxosporea)

      ,
      Parasitology
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          The Myxozoa demonstrate extensive morphological simplification and miniaturization relative to their free-living cnidarian ancestors. This is particularly pronounced in the highly derived myxosporeans, which develop as plasmodia and pseudoplasmodia. To date, motility in these stages has been linked with membrane deformation (e.g. as pseudopodia and mobile folds). Here we illustrate a motile, elongate plasmodium that undergoes coordinated undulatory locomotion, revealing remarkable convergence to a functional worm at the cellular level. Ultrastructural and confocal analyses of these plasmodia identify a highly differentiated external layer containing an actin-rich network, long tubular mitochondria, abundant microtubules, a secreted glycocalyx layer, and an internal region where sporogony occurs and which contains homogeneously distributed granular/fibrillar material. We consider how some of these features may support motility. We also describe the species based on spore morphology and SSU rDNA sequence data, undertake molecular phylogenetic analysis to place it within an early-diverging clade of the ceratomyxids, and evaluate the resultant implications for classification (validity of the genus Meglitschia) and for inferring early host environments (freshwater) of ceratomyxids.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: not found
          • Article: not found

          A guideline for the preparation of species descriptions in Myxosporea

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Should we be worried about long-branch attraction in real data sets? Investigations using metazoan 18S rDNA.

            Although long-branch attraction (LBA) is frequently cited as the cause of anomalous phylogenetic groupings, few examples of LBA involving real sequence data are known. We have found several cases of probable LBA by analyzing subsamples from an alignment of 18S rDNA sequences for 133 metazoans. In one example, maximum parsimony analysis of sequences from two rotifers, a ctenophore, and a polychaete annelid resulted in strong support for a tree grouping two "long-branch taxa" (a rotifer and the ctenophore). Maximum-likelihood analysis of the same sequences yielded strong support for a more biologically reasonable "rotifer monophyly" tree. Attempts to break up long branches for problematic subsamples through increased taxon sampling reduced, but did not eliminate, LBA problems. Exhaustive analyses of all quartets for a subset of 50 sequences were performed in order to compare the performance of maximum likelihood, equal-weights parsimony, and two additional variants of parsimony; these methods do differ substantially in their rates of failure to recover trees consistent with well established, but highly unresolved phylogenies. Power analyses using simulations suggest that some incorrect inferences by maximum parsimony are due to statistical inconsistency and that when estimates of central branch lengths for certain quartets are very low, maximum-likelihood analyses have difficulty recovering accepted phylogenies even with large amounts of data. These examples demonstrate that LBA problems can occur in real data sets, and they provide an opportunity to investigate causes of incorrect inferences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Life history and management of the tambaqui (Colossoma macropomum, Characidae): an important Amazonian food fish

                Bookmark

                Author and article information

                Journal
                Parasitology
                Parasitology
                Cambridge University Press (CUP)
                0031-1820
                1469-8161
                February 2017
                November 08 2016
                February 2017
                : 144
                : 2
                : 158-168
                Article
                10.1017/S0031182016001852
                27821209
                ccfde10d-10c0-4cdd-898b-64c7a85e925a
                © 2017

                https://www.cambridge.org/core/terms

                History

                Comments

                Comment on this article

                scite_
                38
                3
                26
                0
                Smart Citations
                38
                3
                26
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content179

                Cited by8

                Most referenced authors736