Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Three-dimensional holographic communication system for the metaverse

      , , ,
      Optics Communications
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: not found
          • Article: not found

          Structured-light 3D surface imaging: a tutorial

          Jason Geng (2011)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The ball-pivoting algorithm for surface reconstruction

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Holographic three-dimensional telepresence using large-area photorefractive polymer.

              Holography is a technique that is used to display objects or scenes in three dimensions. Such three-dimensional (3D) images, or holograms, can be seen with the unassisted eye and are very similar to how humans see the actual environment surrounding them. The concept of 3D telepresence, a real-time dynamic hologram depicting a scene occurring in a different location, has attracted considerable public interest since it was depicted in the original Star Wars film in 1977. However, the lack of sufficient computational power to produce realistic computer-generated holograms and the absence of large-area and dynamically updatable holographic recording media have prevented realization of the concept. Here we use a holographic stereographic technique and a photorefractive polymer material as the recording medium to demonstrate a holographic display that can refresh images every two seconds. A 50 Hz nanosecond pulsed laser is used to write the holographic pixels. Multicoloured holographic 3D images are produced by using angular multiplexing, and the full parallax display employs spatial multiplexing. 3D telepresence is demonstrated by taking multiple images from one location and transmitting the information via Ethernet to another location where the hologram is printed with the quasi-real-time dynamic 3D display. Further improvements could bring applications in telemedicine, prototyping, advertising, updatable 3D maps and entertainment.
                Bookmark

                Author and article information

                Journal
                Optics Communications
                Optics Communications
                Elsevier BV
                00304018
                January 2023
                January 2023
                : 526
                : 128894
                Article
                10.1016/j.optcom.2022.128894
                ccf5aaf5-5e4f-4693-b2ac-e227bbaa1669
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article