10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Experimental Dissection of the Lytic Replication Cycles of Herpes Simplex Viruses in vitro

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2) produce lifelong infections and are highly prevalent in the human population. Both viruses elicit numerous clinical manifestations and produce mild-to-severe diseases that affect the skin, eyes, and brain, among others. Despite the existence of numerous antivirals against HSV, such as acyclovir and acyclovir-related analogs, virus variants that are resistant to these compounds can be isolated from immunosuppressed individuals. For such isolates, second-line drugs can be used, yet they frequently produce adverse side effects. Furthermore, topical antivirals for treating cutaneous HSV infections usually display poor to moderate efficacy. Hence, better or novel anti-HSV antivirals are needed and details on their mechanisms of action would be insightful for improving their efficacy and identifying specific molecular targets. Here, we review and dissect the lytic replication cycles of herpes simplex viruses, discussing key steps involved in cell infection and the processes that yield new virions. Additionally, we review and discuss rapid, easy-to-perform and simple experimental approaches for studying key steps involved in HSV replication to facilitate the identification of the mechanisms of action of anti-HSV compounds.

          Related collections

          Most cited references193

          • Record: found
          • Abstract: found
          • Article: not found

          Fluorescent probes for super-resolution imaging in living cells.

          In 1873, Ernst Abbe discovered that features closer than approximately 200 nm cannot be resolved by lens-based light microscopy. In recent years, however, several new far-field super-resolution imaging techniques have broken this diffraction limit, producing, for example, video-rate movies of synaptic vesicles in living neurons with 62 nm spatial resolution. Current research is focused on further improving spatial resolution in an effort to reach the goal of video-rate imaging of live cells with molecular (1-5 nm) resolution. Here, we describe the contributions of fluorescent probes to far-field super-resolution imaging, focusing on fluorescent proteins and organic small-molecule fluorophores. We describe the features of existing super-resolution fluorophores and highlight areas of importance for future research and development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global Estimates of Prevalent and Incident Herpes Simplex Virus Type 2 Infections in 2012

            Background Herpes simplex virus type 2 (HSV-2) infection causes significant disease globally. Adolescent and adult infection may present as painful genital ulcers. Neonatal infection has high morbidity and mortality. Additionally, HSV-2 likely contributes substantially to the spread of HIV infection. The global burden of HSV-2 infection was last estimated for 2003. Here we present new global estimates for 2012 of the burden of prevalent (existing) and incident (new) HSV-2 infection among females and males aged 15–49 years, using updated methodology to adjust for test performance and estimate by World Health Organization (WHO) region. Methods and Findings We conducted a literature review of HSV-2 prevalence studies world-wide since 2000. We then fitted a model with constant HSV-2 incidence by age to pooled HSV-2 prevalence values by age and sex. Prevalence values were adjusted for test sensitivity and specificity. The model estimated prevalence and incidence by sex for each WHO region to obtain global burden estimates. Uncertainty bounds were computed by refitting the model to reflect the variation in the underlying prevalence data. In 2012, we estimate that there were 417 million people aged 15–49 years (range: 274–678 million) living with HSV-2 infection world-wide (11.3% global prevalence), of whom 267 million were women. We also estimate that in 2012, 19.2 million (range: 13.0–28.6 million) individuals aged 15–49 years were newly-infected (0.5% of all individuals globally). The highest burden was in Africa. However, despite lower prevalence, South-East Asia and Western Pacific regions also contributed large numbers to the global totals because of large population sizes. Conclusions The global burden of HSV-2 infection is large, leaving over 400 million people at increased risk of genital ulcer disease, HIV acquisition, and transmission of HSV-2 to partners or neonates. These estimates highlight the critical need for development of vaccines, microbicides, and other new HSV prevention strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm.

              Bidirectional transport of macromolecules between the nucleus and the cytoplasm occurs through the nuclear pore complexes (NPCs) by a signal-mediated mechanism that is directed by targeting signals (NLSs) residing on the transported molecules or "cargoes." Nuclear transport starts after interaction of the targeting signal with soluble cellular receptors. After the formation of the cargo-receptor complex in the cytosol, this complex crosses the NPC. Herein, we use gold particles of various sizes coated with cargo-receptor complexes to determine precisely how large macromolecules crossing the NPC by the signal-mediated transport mechanism could be. We found that cargo-receptor-gold complexes with diameter close to 39 nm could be translocated by the NPC. This implies that macromolecules much larger than the assumed functional NPC diameter of 26 nm can be transported into the karyoplasm. The physiological relevance of this finding was supported by the observation that intact nucleocapsids of human hepatitis B virus with diameters of 32 and 36 nm are able to cross the nuclear pore without disassembly.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                11 October 2018
                2018
                : 9
                : 2406
                Affiliations
                Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago, Chile
                Author notes

                Edited by: Michael Nevels, University of St Andrews, United Kingdom

                Reviewed by: Oren Kobiler, Tel Aviv University, Israel; Takayuki Murata, Fujita Health University, Japan

                *Correspondence: Pablo A. González pagonzalez@ 123456bio.puc.cl

                This article was submitted to Virology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.02406
                6198116
                30386309
                cced817f-58c9-4f92-b792-1a75d92c88f4
                Copyright © 2018 Ibáñez, Farías, Gonzalez-Troncoso, Corrales, Duarte, Retamal-Díaz and González.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 July 2018
                : 20 September 2018
                Page count
                Figures: 7, Tables: 2, Equations: 0, References: 216, Pages: 23, Words: 20196
                Categories
                Microbiology
                Review

                Microbiology & Virology
                life cycle herpes simplex viruses,replication cycle herpes simplex virus,herpes simplex virus infection steps,antivirals,acyclovir,antiviral drugs

                Comments

                Comment on this article