8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metformin inhibits cervical cancer cell proliferation via decreased AMPK O-GlcNAcylation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Metformin is a widely used drug for the treatment of type 2 diabetes. Antidiabetic drugs are also known to influence cancer progression, as high glucose levels affect both cancer and diabetes. Metformin induces cell cycle arrest in cancer cells, but the underlying mechanism remains unclear in cervical cancer system. Here, we examined how metformin affects cell cycle arrest and apoptosis in cervical cancer cells. Western blot analysis showed that levels of O-linked N-acetylglucosamine (O-GlcNAc) and O-GlcNAc transferase (OGT) were increased in cervical cancer cells; these effects were reversed by metformin treatment. Immunoprecipitation analysis was used to examine the interplay between O-GlcNAcylation and phosphorylation in HeLa cells, revealing that metformin decreased O-GlcNAcylated AMP-activated protein kinase (AMPK) and increased levels of phospho-AMPK compared to untreated cells. These results were associated with decreased cell cycle arrest and apoptotic cell death in HeLa cells, as shown by flow cytometry. Moreover, 6-diazo-5-oxo-L-norleucine (a glutamine fructose-6-phosphate aminotransferase inhibitor) or thiamet G (an O-GlcNAcase inhibitor) decreased or increased levels of O-GlcNAcylated AMPK, and increased or decreased levels of phosphorylated AMPK, respectively, suggesting that O-GlcNAc modification affects AMPK activation. Of note, we found that metformin treatment of HeLa cells increased the levels of p21 and p27 (which are AMPK-dependent cell cycle inhibitors), leading to increased cell cycle arrest and apoptosis in HeLa cells compared to untreated cells. These findings suggest that metformin may serve as a useful antiproliferative drug in cervical cancer cells, with potential therapeutic benefit.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease.

          O-GlcNAcylation is the addition of β-D-N-acetylglucosamine to serine or threonine residues of nuclear and cytoplasmic proteins. O-linked N-acetylglucosamine (O-GlcNAc) was not discovered until the early 1980s and still remains difficult to detect and quantify. Nonetheless, O-GlcNAc is highly abundant and cycles on proteins with a timescale similar to protein phosphorylation. O-GlcNAc occurs in organisms ranging from some bacteria to protozoans and metazoans, including plants and nematodes up the evolutionary tree to man. O-GlcNAcylation is mostly on nuclear proteins, but it occurs in all intracellular compartments, including mitochondria. Recent glycomic analyses have shown that O-GlcNAcylation has surprisingly extensive cross talk with phosphorylation, where it serves as a nutrient/stress sensor to modulate signaling, transcription, and cytoskeletal functions. Abnormal amounts of O-GlcNAcylation underlie the etiology of insulin resistance and glucose toxicity in diabetes, and this type of modification plays a direct role in neurodegenerative disease. Many oncogenic proteins and tumor suppressor proteins are also regulated by O-GlcNAcylation. Current data justify extensive efforts toward a better understanding of this invisible, yet abundant, modification. As tools for the study of O-GlcNAc become more facile and available, exponential growth in this area of research will eventually take place.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells.

            Recent population studies provide clues that the use of metformin may be associated with reduced incidence and improved prognosis of certain cancers. This drug is widely used in the treatment of type 2 diabetes, where it is often referred to as an "insulin sensitizer" because it not only lowers blood glucose but also reduces the hyperinsulinemia associated with insulin resistance. As insulin and insulin-like growth factors stimulate proliferation of many normal and transformed cell types, agents that facilitate signaling through these receptors would be expected to enhance proliferation. We show here that metformin acts as a growth inhibitor rather than an insulin sensitizer for epithelial cells. Breast cancer cells can be protected against metformin-induced growth inhibition by small interfering RNA against AMP kinase. This shows that AMP kinase pathway activation by metformin, recently shown to be necessary for metformin inhibition of gluconeogenesis in hepatocytes, is also involved in metformin-induced growth inhibition of epithelial cells. The growth inhibition was associated with decreased mammalian target of rapamycin and S6 kinase activation and a general decrease in mRNA translation. These results provide evidence for a mechanism that may contribute to the antineoplastic effects of metformin suggested by recent population studies and justify further work to explore potential roles for activators of AMP kinase in cancer prevention and treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A little sugar goes a long way: The cell biology of O-GlcNAc

              Unlike the complex glycans decorating the cell surface, the O-linked β-N-acetyl glucosamine (O-GlcNAc) modification is a simple intracellular Ser/Thr-linked monosaccharide that is important for disease-relevant signaling and enzyme regulation. O-GlcNAcylation requires uridine diphosphate–GlcNAc, a precursor responsive to nutrient status and other environmental cues. Alternative splicing of the genes encoding the O-GlcNAc cycling enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) yields isoforms targeted to discrete sites in the nucleus, cytoplasm, and mitochondria. OGT and OGA also partner with cellular effectors and act in tandem with other posttranslational modifications. The enzymes of O-GlcNAc cycling act preferentially on intrinsically disordered domains of target proteins impacting transcription, metabolism, apoptosis, organelle biogenesis, and transport.
                Bookmark

                Author and article information

                Journal
                Anim Cells Syst (Seoul)
                Anim Cells Syst (Seoul)
                TACS
                tacs20
                Animal Cells and Systems
                Taylor & Francis
                1976-8354
                2151-2485
                2019
                14 May 2019
                : 23
                : 4
                : 302-309
                Affiliations
                Gyeongsang National University , Jinju, The Republic of Korea
                Author notes
                [CONTACT ] Wan Sung Choi choiws@ 123456gnu.ac.kr School of medicine, Department of Anatomy, Gyeongsang National University , Jinju 52828, The Republic of Korea
                Article
                1614092
                10.1080/19768354.2019.1614092
                6711131
                31489252
                cce57a2b-f4c8-4b6f-843d-8459d854b3a4
                © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 February 2019
                : 12 April 2019
                : 29 April 2019
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 23, Pages: 8
                Funding
                Funded by: National Research Foundation 10.13039/501100001321
                Award ID: This work was supported by MAFRA (117082-03) and t
                This work was supported by National Research Foundation: [Grant Number MAFRA (117082-03) and NRF-2015R1A5A2008833].
                Categories
                Translational Medicine

                ampk,o-glcnacylation,p21,p27,cervical cancer cells
                ampk, o-glcnacylation, p21, p27, cervical cancer cells

                Comments

                Comment on this article