15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A new role for the dynamin GTPase in the regulation of fusion pore expansion

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The role of dynamin GTPase activity in controlling fusion pore expansion and postfusion granule membrane topology was investigated. The experiments show that, in addition to playing a role in endocytosis, GTPase activity of dynamin regulates the rapidity of fusion pore expansion from tens of milliseconds to seconds after fusion.

          Abstract

          Dynamin is a master regulator of membrane fission in endocytosis. However, a function for dynamin immediately upon fusion has also been suspected from a variety of experiments that measured release of granule contents. The role of dynamin guanosine triphosphate hydrolase (GTPase) activity in controlling fusion pore expansion and postfusion granule membrane topology was investigated using polarization optics and total internal reflection fluorescence microscopy (pTIRFM) and amperometry. A dynamin-1 (Dyn1) mutant with increased GTPase activity resulted in transient deformations consistent with rapid fusion pore widening after exocytosis; a Dyn1 mutant with decreased activity slowed fusion pore widening by stabilizing postfusion granule membrane deformations. The experiments indicate that, in addition to its role in endocytosis, GTPase activity of dynamin regulates the rapidity of fusion pore expansion from tens of milliseconds to seconds after fusion. These findings expand the membrane-sculpting repertoire of dynamin to include the regulation of immediate postfusion events in exocytosis that control the rate of release of soluble granule contents.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding.

          DYNAMIN, a 100K member of the GTPase superfamily, is the mammalian homologue of the Drosophila shibire gene product. Mutations in shibire cause a defect in endocytosis leading to accumulation of coated pits and deep invaginations at the plasma membrane of all tissues examined. Similarly, invaginated coated pits accumulate in mammalian cells overexpressing dominant-negative mutants of dynamin, establishing that dynamin is required for the formation of 'constricted' coated pits and for coated vesicle budding. Whether dynamin functions in the classic GTPase mode as a molecular switch to regulate events leading to coated vesicle budding or instead actively participates as a mechanochemical enzyme driving coated vesicle formation is unclear. Here we show that dynamin spontaneously self-assembles into rings and stacks of interconnected rings, comparable in dimension to the 'collars' observed at the necks of invaginated coated pits that accumulate at synaptic terminals in shibire flies. We propose that invaginated coated pits become constricted by the assembly of dynamin into rings around their necks. A concerted conformational change would then close the rings and pinch off the budding coated vesicles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission.

            Dynamin, a crucial factor in endocytosis, is a member of a family of GTPases that participates in membrane fission. It was initially proposed to act as a machine that constricts and cuts the neck of nascent vesicles in a GTP-hydrolysis-dependent reaction, but subsequent studies suggested alternative models. Here we monitored the effect of nucleotides on dynamin-coated lipid tubules in real time. Addition of GTP, but not of GDP or GTP-gammaS, resulted in twisting of the tubules and supercoiling, suggesting a rotatory movement of the helix turns relative to each other during GTP hydrolysis. Rotation was confirmed by the movement of beads attached to the tubules. Twisting activity produced a longitudinal tension that was released by tubule breakage when both ends of the tubule were anchored. Fission also occurred when dynamin and GTP were added to lipid tubules that had been generated from liposomes by the motor activity of kinesin on microtubules. No fission events were observed in the absence of longitudinal tension. These findings demonstrate a mechanoenzyme activity of dynamin in endocytosis, but also imply that constriction is not sufficient for fission. At the short necks of endocytic vesicles, other factors leading to tension may cooperate with the constricting activity of dynamin to induce fission.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells.

              Secretion of catecholamines from single bovine chromaffin cells in culture was elicited by brief pressure ejections from a micropipette containing nicotine, carbamoylcholine, or potassium ions or by mechanical stimulation. Release was monitored electrochemically with a carbon-fiber microelectrode placed adjacent to the cell. Cyclic voltammetry was used to identify secreted species, whereas constant potential amperometry was used for improved temporal resolution (millisecond range) of catecholamine detection. During secretion, brief current spikes were observed, which were shown to be due to detection of catecholamines by electrooxidation. The spikes have the physical characteristics of multimolecular packets of catecholamines released at random times and locations from the surface of the single cell. The half-width of the spikes was found to increase with an increase in cell-electrode spacing. The properties of the catecholamine spikes correlate well with expectations based on secretion from individual storage vesicles. Spikes do not occur in the absence of Ca2+ in the buffer, and the majority of spikes are found to be distributed between 0.2 and 2 picocoulombs, corresponding to 1-10 attomoles of catecholamine detected. The frequency of the spikes increases with the intensity of the stimulus, but the average quantity of catecholamine in each spike is independent of the stimulus. Thus, these measurements represent time-resolved observation of quantal secretion of catecholamines and provide direct evidence for the exocytotic hypothesis.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                01 June 2011
                : 22
                : 11
                : 1907-1918
                Affiliations
                [1] aDepartment of Pharmacology, University of Michigan, Ann Arbor, MI 48109
                [2] bDepartment of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
                [3] cDepartment of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
                [4] dDepartment of Physics and LSA Biophysics, University of Michigan, Ann Arbor, MI 48109
                University of Wisconsin
                Author notes
                *Address correspondence to: Arun Anantharam ( arunanan@ 123456umich.edu ), Ronald W. Holz ( holz@ 123456umich.edu ).
                Article
                E11-02-0101
                10.1091/mbc.E11-02-0101
                3103406
                21460182
                cce42012-269a-4aa3-8a1d-8f495f85eef8
                © 2011 Anantharam et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB”, “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.

                History
                : 04 February 2011
                : 22 March 2011
                : 23 March 2011
                Categories
                Articles
                Membrane Trafficking

                Molecular biology
                Molecular biology

                Comments

                Comment on this article