Silicon photonics with the advantages of low power consumption and low fabrication cost is a crucial technology for facilitating high-capacity optical communications and interconnects. The graphene photodetectors (GPDs) featuring broadband operation, high speed, and low integration cost can be good additions to the SiGe photodetectors, supporting high-speed photodetection in wavelength bands beyond 1.6 μm on silicon. Here we realize a silicon-integrated four-channel wavelength division multiplexing (WDM) optical receiver based on a micro-ring resonator (MRR) array and four p-n homojunction GPDs. These photo-thermoelectric (PTE) GPDs exhibit zero-bias responsivities of ∼1.1 V W −1 and set-up limited 3 dB-bandwidth >67 GHz. The GPDs show good consistence benefiting from the compact active region array (0.006 mm 2) covered by a single mechanically exfoliated hBN/graphene/hBN stack. Moreover, the WDM graphene optical receiver realized 4 × 16 Gbps non-return-to-zero optical signal transmission. To the best of our knowledge, it is the first GPD-array-based optical receiver using high-quality mechanically exfoliated graphene and edge graphene-metal contacts with low resistances. Apparently, our design is also compatible with CVD-grown graphene. This work sheds light on the large-scale integration of GPDs with high consistency and uniformity, enabling the application of high-quality mechanically exfoliated graphene, and promoting the development of the graphene photonic integrated circuits.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.