760
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plants regenerated from tissue culture contain stable epigenome changes in rice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most transgenic crops are produced through tissue culture. The impact of utilizing such methods on the plant epigenome is poorly understood. Here we generated whole-genome, single-nucleotide resolution maps of DNA methylation in several regenerated rice lines. We found that all tested regenerated plants had significant losses of methylation compared to non-regenerated plants. Loss of methylation was largely stable across generations, and certain sites in the genome were particularly susceptible to loss of methylation. Loss of methylation at promoters was associated with deregulated expression of protein-coding genes. Analyses of callus and untransformed plants regenerated from callus indicated that loss of methylation is stochastically induced at the tissue culture step. These changes in methylation may explain a component of somaclonal variation, a phenomenon in which plants derived from tissue culture manifest phenotypic variability.

          DOI: http://dx.doi.org/10.7554/eLife.00354.001

          eLife digest

          Rice is one of the most important food crops and is estimated to provide more than a fifth of the calories consumed by the world's population. For several decades, rice has been modified by conventional breeding methods to produce plants with increased yields and greater resistance to pests and harsh weather conditions. Efforts are also being made to create rice plants with superior yield traits and resistance to biotic and abiotic stresses using genetic engineering techniques.

          Genetically modified plants are usually produced using tissue culture. New genes are introduced into plant cells that are growing in a dish, and each cell then replicates to form a mass of genetically identical cells. The application of plant hormones triggers the tissue to produce roots and shoots, giving rise to plantlet clones.

          In addition to the genes that comprise its genome, the genetic make-up of an organism also includes its epigenome—a collection of chemical modifications that influence whether or not a given gene is expressed as a protein. The addition of methyl groups to specific sequences within the DNA, for example, acts as an epigenetic signal to reduce the transcription, and thus expression, of the genes concerned.

          Now, Stroud et al. reveal that the techniques used to modify a plant's genome—in particular, the process of tissue culture—also affect its epigenome. They prepared high-resolution maps of DNA methylation in several regenerated rice lines, and found that regenerated plants produced in culture showed less methylation than control plants. The changes were relatively over-represented around the promoter sequences of genes—regions of DNA that act as binding sites for the enzymes that transcribe DNA into RNA—and were accompanied by changes in gene expression. Crucially, the plants' descendants frequently also inherited the changes in methylation status. These results are likely part of the explanation for a phenomenon called somaclonal variation, first observed before the era of modern biotechnology, in which plants regenerated from tissue culture sometimes show heritable alterations in the phenotype of the plant.

          DOI: http://dx.doi.org/10.7554/eLife.00354.002

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning.

          Cytosine DNA methylation is important in regulating gene expression and in silencing transposons and other repetitive sequences. Recent genomic studies in Arabidopsis thaliana have revealed that many endogenous genes are methylated either within their promoters or within their transcribed regions, and that gene methylation is highly correlated with transcription levels. However, plants have different types of methylation controlled by different genetic pathways, and detailed information on the methylation status of each cytosine in any given genome is lacking. To this end, we generated a map at single-base-pair resolution of methylated cytosines for Arabidopsis, by combining bisulphite treatment of genomic DNA with ultra-high-throughput sequencing using the Illumina 1G Genome Analyser and Solexa sequencing technology. This approach, termed BS-Seq, unlike previous microarray-based methods, allows one to sensitively measure cytosine methylation on a genome-wide scale within specific sequence contexts. Here we describe methylation on previously inaccessible components of the genome and analyse the DNA methylation sequence composition and distribution. We also describe the effect of various DNA methylation mutants on genome-wide methylation patterns, and demonstrate that our newly developed library construction and computational methods can be applied to large genomes such as that of mouse.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spontaneous epigenetic variation in the Arabidopsis thaliana methylome.

            Heritable epigenetic polymorphisms, such as differential cytosine methylation, can underlie phenotypic variation. Moreover, wild strains of the plant Arabidopsis thaliana differ in many epialleles, and these can influence the expression of nearby genes. However, to understand their role in evolution, it is imperative to ascertain the emergence rate and stability of epialleles, including those that are not due to structural variation. We have compared genome-wide DNA methylation among 10 A. thaliana lines, derived 30 generations ago from a common ancestor. Epimutations at individual positions were easily detected, and close to 30,000 cytosines in each strain were differentially methylated. In contrast, larger regions of contiguous methylation were much more stable, and the frequency of changes was in the same low range as that of DNA mutations. Like individual positions, the same regions were often affected by differential methylation in independent lines, with evidence for recurrent cycles of forward and reverse mutations. Transposable elements and short interfering RNAs have been causally linked to DNA methylation. In agreement, differentially methylated sites were farther from transposable elements and showed less association with short interfering RNA expression than invariant positions. The biased distribution and frequent reversion of epimutations have important implications for the potential contribution of sequence-independent epialleles to plant evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transgenerational epigenetic instability is a source of novel methylation variants.

              Epigenetic information, which may affect an organism's phenotype, can be stored and stably inherited in the form of cytosine DNA methylation. Changes in DNA methylation can produce meiotically stable epialleles that affect transcription and morphology, but the rates of spontaneous gain or loss of DNA methylation are unknown. We examined spontaneously occurring variation in DNA methylation in Arabidopsis thaliana plants propagated by single-seed descent for 30 generations. We identified 114,287 CG single methylation polymorphisms and 2485 CG differentially methylated regions (DMRs), both of which show patterns of divergence compared with the ancestral state. Thus, transgenerational epigenetic variation in DNA methylation may generate new allelic states that alter transcription, providing a mechanism for phenotypic diversity in the absence of genetic mutation.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                Elife
                elife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                19 March 2013
                2013
                : 2
                : e00354
                Affiliations
                [1 ]Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles , Los Angeles, United States
                [2 ]Department of Plant Pathology, Ohio State University , Columbus, United States
                [3 ]Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware , Newark, United States
                [4 ]Howard Hughes Medical Institute, University of California, Los Angeles , Los Angeles, United States
                University of Cambridge , United Kingdom
                Author notes
                [* ]For correspondence: jacobsen@ 123456ucla.edu
                Article
                00354
                10.7554/eLife.00354
                3601819
                23539454
                cca4ece3-0f7e-417c-a198-a120e015e47a
                Copyright © 2013, Stroud et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 05 November 2012
                : 11 February 2013
                Funding
                Funded by: US National Science Foundation Plant Genome Research Program
                Award ID: 0701745
                Award Recipient :
                Funded by: Dissertation Year Fellowship, University of California, Los Angeles
                Award Recipient :
                Funded by: Special Fellow of the Leukemia & Lymphoma Society
                Award Recipient :
                Funded by: Howard Hughes Medical Institute
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Genes and Chromosomes
                Plant Biology
                Custom metadata
                1.0
                The use of tissue culture reduces the chemical modification of plant DNA, and this has lasting effects on gene expression in the plants and their descendants.

                Life sciences
                rice,dna methylation,tissue culture,small rna,regeneration,other
                Life sciences
                rice, dna methylation, tissue culture, small rna, regeneration, other

                Comments

                Comment on this article