45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Graded specialization within and between the anterior temporal lobes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Considerable evidence from different methodologies has identified the anterior temporal lobes (ATLs) as key regions for the representation of semantic knowledge. Research interest is now shifting to investigate the roles of different ATL subregions in semantic representation, with particular emphasis on the functions of the left versus right ATLs. In this review, we provide evidence for graded specializations both between and within the ATLs. We argue (1) that multimodal, pan‐category semantic representations are supported jointly by both left and right ATLs, yet (2) that the ATLs are not homogeneous in their function. Instead, subtle functional gradations both between and within the ATLs emerge as a consequence of differential connectivity with primary sensory/motor/limbic regions. This graded specialization account of semantic representation provides a compromise between theories that posit no differences between the functions of the left and right ATLs and those that posit that the left and right ATLs are entirely segregated in function. Evidence for this graded account comes from converging sources, and its benefits have been exemplified in formal computational models. We propose that this graded principle is not only a defining feature of the ATLs but is also a more general neurocomputational principle found throughout the temporal lobes.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          From sensation to cognition.

          M. Mesulam (1998)
          Sensory information undergoes extensive associative elaboration and attentional modulation as it becomes incorporated into the texture of cognition. This process occurs along a core synaptic hierarchy which includes the primary sensory, upstream unimodal, downstream unimodal, heteromodal, paralimbic and limbic zones of the cerebral cortex. Connections from one zone to another are reciprocal and allow higher synaptic levels to exert a feedback (top-down) influence upon earlier levels of processing. Each cortical area provides a nexus for the convergence of afferents and divergence of efferents. The resultant synaptic organization supports parallel as well as serial processing, and allows each sensory event to initiate multiple cognitive and behavioural outcomes. Upstream sectors of unimodal association areas encode basic features of sensation such as colour, motion, form and pitch. More complex contents of sensory experience such as objects, faces, word-forms, spatial locations and sound sequences become encoded within downstream sectors of unimodal areas by groups of coarsely tuned neurons. The highest synaptic levels of sensory-fugal processing are occupied by heteromodal, paralimbic and limbic cortices, collectively known as transmodal areas. The unique role of these areas is to bind multiple unimodal and other transmodal areas into distributed but integrated multimodal representations. Transmodal areas in the midtemporal cortex, Wernicke's area, the hippocampal-entorhinal complex and the posterior parietal cortex provide critical gateways for transforming perception into recognition, word-forms into meaning, scenes and events into experiences, and spatial locations into targets for exploration. All cognitive processes arise from analogous associative transformations of similar sets of sensory inputs. The differences in the resultant cognitive operation are determined by the anatomical and physiological properties of the transmodal node that acts as the critical gateway for the dominant transformation. Interconnected sets of transmodal nodes provide anatomical and computational epicentres for large-scale neurocognitive networks. In keeping with the principles of selectively distributed processing, each epicentre of a large-scale network displays a relative specialization for a specific behavioural component of its principal neurospychological domain. The destruction of transmodal epicentres causes global impairments such as multimodal anomia, neglect and amnesia, whereas their selective disconnection from relevant unimodal areas elicits modality-specific impairments such as prosopagnosia, pure word blindness and category-specific anomias. The human brain contains at least five anatomically distinct networks. The network for spatial awareness is based on transmodal epicentres in the posterior parietal cortex and the frontal eye fields; the language network on epicentres in Wernicke's and Broca's areas; the explicit memory/emotion network on epicentres in the hippocampal-entorhinal complex and the amygdala; the face-object recognition network on epicentres in the midtemporal and temporopolar cortices; and the working memory-executive function network on epicentres in the lateral prefrontal cortex and perhaps the posterior parietal cortex. Individual sensory modalities give rise to streams of processing directed to transmodal nodes belonging to each of these networks. The fidelity of sensory channels is actively protected through approximately four synaptic levels of sensory-fugal processing. The modality-specific cortices at these four synaptic levels encode the most veridical representations of experience. Attentional, motivational and emotional modulations, including those related to working memory, novelty-seeking and mental imagery, become increasingly more pronounced within downstream components of unimodal areas, where they help to create a highly edited subjective version of the world. (ABSTRACT TRUNCATED)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Loss of recent memory after bilateral hippocampal lesions.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional anatomy of a common semantic system for words and pictures.

              The relationship between the semantic processing of words and of pictures is a matter of debate among cognitive scientists. We studied the functional anatomy of such processing by using positron-emission tomography (PET). We contrasted activity during two semantic tasks (probing knowledge of associations between concepts, and knowledge of the visual attributes of these concepts) and a baseline task (discrimination of physical stimulus size), performed either with words or with pictures. Modality-specific activations unrelated to semantic processing occurred in the left inferior parietal lobule for words, and the right middle occipital gyrus for pictures. A semantic network common to both words and pictures extended from the left superior occipital gyrus through the middle and inferior temporal cortex to the inferior frontal gyrus. A picture-specific activation related to semantic tasks occurred in the left posterior inferior temporal sulcus, and word-specific activations related to semantic tasks were localized to the left superior temporal sulcus, left anterior middle temporal gyrus, and left inferior frontal sulcus. Thus semantic tasks activate a distributed semantic processing system shared by both words and pictures, with a few specific areas differentially active for either words or pictures.
                Bookmark

                Author and article information

                Journal
                Ann N Y Acad Sci
                Ann. N. Y. Acad. Sci
                10.1111/(ISSN)1749-6632
                NYAS
                Annals of the New York Academy of Sciences
                John Wiley and Sons Inc. (Hoboken )
                0077-8923
                1749-6632
                26 October 2015
                November 2015
                : 1359
                : 1 , The Year in Cognitive Neuroscience ( doiID: 10.1111/nyas.2015.1359.issue-1 )
                : 84-97
                Affiliations
                [ 1 ]University of California, Santa Barbara
                [ 2 ]University of British Columbia
                [ 1 ]Neuroscience and Aphasia Research Unit (NARU) University of Manchester ManchesterUnited Kingdom
                [ 2 ]Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), Department of Psychology, University of Edinburgh EdinburghUnited Kingdom
                Author notes
                [*] [* ]Address for correspondence: Prof. M.A. Lambon Ralph, Neuroscience & Aphasia Research Unit (NARU), School of Psychological Sciences (Zochonis Building), University of Manchester, Brunswick Street, Manchester M13 9PL, UK. matt.lambon-ralph@ 123456manchester.ac.uk
                Article
                NYAS12951
                10.1111/nyas.12951
                4982095
                26502375
                cc9820d1-9b84-4004-8f4e-a395a368be57
                © 2015 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of New York Academy of Sciences.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 14
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                nyas12951
                November 2015
                Converter:WILEY_ML3GV2_TO_NLMPMC version:4.9.4 mode:remove_FC converted:16.08.2016

                Uncategorized
                anterior temporal lobes,conceptual knowledge,semantic memory,laterality,hemispheric specialization

                Comments

                Comment on this article