10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Selective NLRP3 inflammasome inhibitor reduces neuroinflammation and improves long-term neurological outcomes in a murine model of traumatic brain injury

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated inflammatory response has emerged as a prominent contributor to the pathophysiological processes of traumatic brain injury (TBI). Recently, a potent, selective, small-molecule NLRP3 inflammasome inhibitor, MCC950, was described. Here, we investigated the effect of MCC950 on inflammatory brain injury and long-term neurological outcomes in a mouse model of TBI. Male C57/BL6 mice were subjected to TBI using the controlled cortical impact injury (CCI) system. Western blotting, flow cytometry, and immunofluorescence assays were utilized to analyze post-traumatic NLRP3 inflammasome expression and determine its cellular source. We found that NLRP3 inflammasome expression was significantly increased in the peri-contusional cortex and that microglia were the primary source of this expression. The effects of MCC950 on mice with TBI were then determined using post-assessments including analyses of neurological deficits, brain water content, traumatic lesion volume, neuroinflammation, blood-brain barrier (BBB) integrity, and cell death. MCC950 treatment resulted in a better neurological outcome after TBI by alleviating brain edema, reducing lesion volume, and improving long-term motor and cognitive functions. The therapeutic window for MCC950 against TBI was as long as 6 h. Furthermore, the neuroprotective effect of MCC950 was associated with reduced microglial activation, leukocyte recruitment, and pro-inflammatory cytokine production. In addition, MCC950 preserved BBB integrity, alleviated TBI-induced loss of tight junction proteins, and attenuated cell death. Notably, the efficacy of MCC950 was abolished in microglia-depleted mice. These results indicate that microglia-derived NLRP3 inflammasome may be primarily involved in the inflammatory response to TBI, and specific NLRP3 inflammasome inhibition using MCC950 may be a promising therapeutic approach for patients with TBI.

          Related collections

          Author and article information

          Journal
          Neurobiology of Disease
          Neurobiology of Disease
          Elsevier BV
          09699961
          September 2018
          September 2018
          : 117
          : 15-27
          Article
          10.1016/j.nbd.2018.05.016
          29859317
          cc97dd8e-5b77-4620-a631-d1270a567394
          © 2018

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article