8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Floral transcriptomes reveal gene networks in pineapple floral growth and fruit development

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Proper flower development is essential for sexual reproductive success and the setting of fruits and seeds. The availability of a high quality genome sequence for pineapple makes it an excellent model for studying fruit and floral organ development. In this study, we sequenced 27 different pineapple floral samples and integrated nine published RNA-seq datasets to generate tissue- and stage-specific transcriptomic profiles. Pairwise comparisons and weighted gene co-expression network analysis successfully identified ovule-, stamen-, petal- and fruit-specific modules as well as hub genes involved in ovule, fruit and petal development. In situ hybridization confirmed the enriched expression of six genes in developing ovules and stamens. Mutant characterization and complementation analysis revealed the important role of the subtilase gene AcSBT1.8 in petal development. This work provides an important genomic resource for functional analysis of pineapple floral organ growth and fruit development and sheds light on molecular networks underlying pineapple reproductive organ growth.

          Abstract

          Wang et al. perform RNA-Seq on pineapple floral samples and also use previously published RNA-Seq datasets to generate tissue- and stage-specific transcriptomic profiles. The authors use weighted gene co-expression network analysis to identify gene networks, bringing insight to underlying pineapple reproductive organ growth.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          A gene-coexpression network for global discovery of conserved genetic modules.

          To elucidate gene function on a global scale, we identified pairs of genes that are coexpressed over 3182 DNA microarrays from humans, flies, worms, and yeast. We found 22,163 such coexpression relationships, each of which has been conserved across evolution. This conservation implies that the coexpression of these gene pairs confers a selective advantage and therefore that these genes are functionally related. Many of these relationships provide strong evidence for the involvement of new genes in core biological functions such as the cell cycle, secretion, and protein expression. We experimentally confirmed the predictions implied by some of these links and identified cell proliferation functions for several genes. By assembling these links into a gene-coexpression network, we found several components that were animal-specific as well as interrelationships between newly evolved and ancient modules.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            The pineapple genome and the evolution of CAM photosynthesis.

            Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 and MD2 and a wild pineapple relative, Ananas bracteatus accession CB5. The pineapple genome has one fewer ancient whole-genome duplication event than sequenced grass genomes and a conserved karyotype with seven chromosomes from before the ρ duplication event. The pineapple lineage has transitioned from C3 photosynthesis to CAM, with CAM-related genes exhibiting a diel expression pattern in photosynthetic tissues. CAM pathway genes were enriched with cis-regulatory elements associated with the regulation of circadian clock genes, providing the first cis-regulatory link between CAM and circadian clock regulation. Pineapple CAM photosynthesis evolved by the reconfiguration of pathways in C3 plants, through the regulatory neofunctionalization of preexisting genes and not through the acquisition of neofunctionalized genes via whole-genome or tandem gene duplication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular mechanisms of flower development: an armchair guide.

              An afternoon stroll through an English garden reveals the breathtaking beauty and enormous diversity of flowering plants. The extreme variation of flower morphologies, combined with the relative simplicity of floral structures and the wealth of floral mutants available, has made the flower an excellent model for studying developmental cell-fate specification, morphogenesis and tissue patterning. Recent molecular genetic studies have begun to reveal the transcriptional regulatory cascades that control early patterning events during flower formation, the dynamics of the gene-regulatory interactions, and the complex combinatorial mechanisms that create a distinct final floral architecture and form.
                Bookmark

                Author and article information

                Contributors
                yuanqin@fafu.edu.cn
                Journal
                Commun Biol
                Commun Biol
                Communications Biology
                Nature Publishing Group UK (London )
                2399-3642
                10 September 2020
                10 September 2020
                2020
                : 3
                : 500
                Affiliations
                [1 ]GRID grid.256111.0, ISNI 0000 0004 1760 2876, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, College of Horticulture, , Fujian Agriculture and Forestry University, ; Fuzhou, 350002 China
                [2 ]GRID grid.418524.e, ISNI 0000 0004 0369 6250, Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, , Ministry of Agriculture, ; Nanning, 530007 China
                [3 ]GRID grid.256609.e, ISNI 0000 0001 2254 5798, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, , Guangxi University, ; Nanning, 530004 China
                Author information
                http://orcid.org/0000-0003-4713-6151
                Article
                1235
                10.1038/s42003-020-01235-2
                7483743
                32913289
                cc893354-539a-42d4-ad1e-4f69558f67d4
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 23 April 2020
                : 12 August 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                gene regulatory networks,oogenesis,gene regulation,plant genetics,plant development

                Comments

                Comment on this article