2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comprehensive review of carbon quantification by improved forest management offset protocols

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Improved forest management (IFM) has the potential to remove and store large quantities of carbon from the atmosphere. Around the world, 293 IFM offset projects have produced 11% of offset credits by voluntary offset registries to date, channeling substantial climate mitigation funds into forest management projects. This paper summarizes the state of the scientific literature for key carbon offset quality criteria—additionality, baselines, leakage, durability, and forest carbon accounting—and discusses how well currently used IFM protocols align with this literature. Our analysis identifies important areas where the protocols deviate from scientific understanding related to baselines, leakage, risk of reversal, and the accounting of carbon in forests and harvested wood products, risking significant over-estimation of carbon offset credits. We recommend specific improvements to the protocols that would likely result in more accurate estimates of program impact, and identify areas in need of more research. Most importantly, more conservative baselines can substantially reduce, but not resolve, over-crediting risk from multiple factors.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          A global analysis of root distributions for terrestrial biomes

          Understanding and predicting ecosystem functioning (e.g., carbon and water fluxes) and the role of soils in carbon storage requires an accurate assessment of plant rooting distributions. Here, in a comprehensive literature synthesis, we analyze rooting patterns for terrestrial biomes and compare distributions for various plant functional groups. We compiled a database of 250 root studies, subdividing suitable results into 11 biomes, and fitted the depth coefficient β to the data for each biome (Gale and Grigal 1987). β is a simple numerical index of rooting distribution based on the asymptotic equation Y=1-βd, where d = depth and Y = the proportion of roots from the surface to depth d. High values of β correspond to a greater proportion of roots with depth. Tundra, boreal forest, and temperate grasslands showed the shallowest rooting profiles (β=0.913, 0.943, and 0.943, respectively), with 80-90% of roots in the top 30 cm of soil; deserts and temperate coniferous forests showed the deepest profiles (β=0.975 and 0.976, respectively) and had only 50% of their roots in the upper 30 cm. Standing root biomass varied by over an order of magnitude across biomes, from approximately 0.2 to 5 kg m-2. Tropical evergreen forests had the highest root biomass (5 kg m-2), but other forest biomes and sclerophyllous shrublands were of similar magnitude. Root biomass for croplands, deserts, tundra and grasslands was below 1.5 kg m-2. Root/shoot (R/S) ratios were highest for tundra, grasslands, and cold deserts (ranging from 4 to 7); forest ecosystems and croplands had the lowest R/S ratios (approximately 0.1 to 0.5). Comparing data across biomes for plant functional groups, grasses had 44% of their roots in the top 10 cm of soil. (β=0.952), while shrubs had only 21% in the same depth increment (β=0.978). The rooting distribution of all temperate and tropical trees was β=0.970 with 26% of roots in the top 10 cm and 60% in the top 30 cm. Overall, the globally averaged root distribution for all ecosystems was β=0.966 (r 2=0.89) with approximately 30%, 50%, and 75% of roots in the top 10 cm, 20 cm, and 40 cm, respectively. We discuss the merits and possible shortcomings of our analysis in the context of root biomass and root functioning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Natural climate solutions

            Significance Most nations recently agreed to hold global average temperature rise to well below 2 °C. We examine how much climate mitigation nature can contribute to this goal with a comprehensive analysis of “natural climate solutions” (NCS): 20 conservation, restoration, and/or improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We show that NCS can provide over one-third of the cost-effective climate mitigation needed between now and 2030 to stabilize warming to below 2 °C. Alongside aggressive fossil fuel emissions reductions, NCS offer a powerful set of options for nations to deliver on the Paris Climate Agreement while improving soil productivity, cleaning our air and water, and maintaining biodiversity.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Root biomass allocation in the world's upland forests

                Bookmark

                Author and article information

                Journal
                Frontiers in Forests and Global Change
                Front. For. Glob. Change
                Frontiers Media SA
                2624-893X
                March 21 2023
                March 21 2023
                : 6
                Article
                10.3389/ffgc.2023.958879
                cc74a493-5758-477c-a94a-0db129571d25
                © 2023

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article