12
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Utility of the Comprehensive Health and Stringency Indexes in Evaluating Government Responses for Containing the Spread of COVID-19 in India: Ecological Time-Series Study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Many nations swiftly designed and executed government policies to contain the rapid rise in COVID-19 cases. Government actions can be broadly segmented as movement and mass gathering restrictions (such as travel restrictions and lockdown), public awareness (such as face covering and hand washing), emergency health care investment, and social welfare provisions (such as poor welfare schemes to distribute food and shelter). The Blavatnik School of Government, University of Oxford, tracked various policy initiatives by governments across the globe and released them as composite indices. We assessed the overall government response using the Oxford Comprehensive Health Index (CHI) and Stringency Index (SI) to combat the COVID-19 pandemic.

          Objective

          This study aims to demonstrate the utility of CHI and SI to gauge and evaluate the government responses for containing the spread of COVID-19. We expect a significant inverse relationship between policy indices (CHI and SI) and COVID-19 severity indices (morbidity and mortality).

          Methods

          In this ecological study, we analyzed data from 2 publicly available data sources released between March 2020 and October 2021: the Oxford Covid-19 Government Response Tracker and the World Health Organization. We used autoregressive integrated moving average (ARIMA) and seasonal ARIMA to model the data. The performance of different models was assessed using a combination of evaluation criteria: adjusted R 2, root mean square error, and Bayesian information criteria.

          Results

          implementation of policies by the government to contain the COVID-19 crises resulted in higher CHI and SI in the beginning. Although the value of CHI and SI gradually fell, they were consistently higher at values of >80% points. During the initial investigation, we found that cases per million (CPM) and deaths per million (DPM) followed the same trend. However, the final CPM and DPM models were seasonal ARIMA (3,2,1)(1,0,1) and ARIMA (1,1,1), respectively. This study does not support the hypothesis that COVID-19 severity (CPM and DPM) is associated with stringent policy measures (CHI and SI).

          Conclusions

          Our study concludes that the policy measures (CHI and SI) do not explain the change in epidemiological indicators (CPM and DPM). The study reiterates our understanding that strict policies do not necessarily lead to better compliance but may overwhelm the overstretched physical health systems. Twenty-first–century problems thus demand 21st-century solutions. The digital ecosystem was instrumental in the timely collection, curation, cloud storage, and data communication. Thus, digital epidemiology can and should be successfully integrated into existing surveillance systems for better disease monitoring, management, and evaluation.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Using social and behavioural science to support COVID-19 pandemic response

          The COVID-19 pandemic represents a massive global health crisis. Because the crisis requires large-scale behaviour change and places significant psychological burdens on individuals, insights from the social and behavioural sciences can be used to help align human behaviour with the recommendations of epidemiologists and public health experts. Here we discuss evidence from a selection of research topics relevant to pandemics, including work on navigating threats, social and cultural influences on behaviour, science communication, moral decision-making, leadership, and stress and coping. In each section, we note the nature and quality of prior research, including uncertainty and unsettled issues. We identify several insights for effective response to the COVID-19 pandemic and highlight important gaps researchers should move quickly to fill in the coming weeks and months.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker)

            COVID-19 has prompted unprecedented government action around the world. We introduce the Oxford COVID-19 Government Response Tracker (OxCGRT), a dataset that addresses the need for continuously updated, readily usable and comparable information on policy measures. From 1 January 2020, the data capture government policies related to closure and containment, health and economic policy for more than 180 countries, plus several countries' subnational jurisdictions. Policy responses are recorded on ordinal or continuous scales for 19 policy areas, capturing variation in degree of response. We present two motivating applications of the data, highlighting patterns in the timing of policy adoption and subsequent policy easing and reimposition, and illustrating how the data can be combined with behavioural and epidemiological indicators. This database enables researchers and policymakers to explore the empirical effects of policy responses on the spread of COVID-19 cases and deaths, as well as on economic and social welfare.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ranking the effectiveness of worldwide COVID-19 government interventions

              Assessing the effectiveness of non-pharmaceutical interventions (NPIs) to mitigate the spread of SARS-CoV-2 is critical to inform future preparedness response plans. Here we quantify the impact of 6,068 hierarchically coded NPIs implemented in 79 territories on the effective reproduction number, Rt, of COVID-19. We propose a modelling approach that combines four computational techniques merging statistical, inference and artificial intelligence tools. We validate our findings with two external datasets recording 42,151 additional NPIs from 226 countries. Our results indicate that a suitable combination of NPIs is necessary to curb the spread of the virus. Less disruptive and costly NPIs can be as effective as more intrusive, drastic, ones (for example, a national lockdown). Using country-specific 'what-if' scenarios, we assess how the effectiveness of NPIs depends on the local context such as timing of their adoption, opening the way for forecasting the effectiveness of future interventions.
                Bookmark

                Author and article information

                Contributors
                Journal
                JMIR Public Health Surveill
                JMIR Public Health Surveill
                JPH
                JMIR Public Health and Surveillance
                JMIR Publications (Toronto, Canada )
                2369-2960
                2023
                10 February 2023
                10 February 2023
                : 9
                : e38371
                Affiliations
                [1 ] Department of Biostatistics Post Graduate Institute of Medical Education and Research Chandigarh India
                [2 ] Department of Psychology Mehr Chand Mahajan DAV College Chandigarh India
                [3 ] Department of Health Research International Institute of Health Management Research New Delhi India
                [4 ] Department of Community & Family Medicine All India Institute of Medical Sciences Bhatinda India
                Author notes
                Corresponding Author: Kamal Kishore kkishore.pgi@ 123456gmail.com
                Author information
                https://orcid.org/0000-0001-8936-0843
                https://orcid.org/0000-0002-8914-4283
                https://orcid.org/0000-0002-3525-4823
                https://orcid.org/0000-0002-1787-8392
                https://orcid.org/0000-0002-3720-5742
                Article
                v9i1e38371
                10.2196/38371
                9924057
                36395334
                cc614cfb-e9fb-41ea-a056-5a90baf9c861
                ©Kamal Kishore, Vidushi Jaswal, Anuj Kumar Pandey, Madhur Verma, Vipin Koushal. Originally published in JMIR Public Health and Surveillance (https://publichealth.jmir.org), 10.02.2023.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Public Health and Surveillance, is properly cited. The complete bibliographic information, a link to the original publication on https://publichealth.jmir.org, as well as this copyright and license information must be included.

                History
                : 30 March 2022
                : 5 October 2022
                : 25 October 2022
                : 18 January 2023
                Categories
                Original Paper
                Original Paper

                covid-19,government response,nonpharmaceutical interventions,lockdown,comprehensive health index,stringency index,time-series modeling,arima,sarima,oxford covid-19 government response tracker,public health,surveillance,oxford tracker,ecological study,health data,health policy,bayesian information criteria

                Comments

                Comment on this article