43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Selective silencing of DNA topoisomerase IIβ in human mesenchymal stem cells by siRNAs (small interfering RNAs)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          hMSCs (human mesenchymal stem cells) express two isoforms of DNA topo II (topoisomerase II). Although both isoforms have the same catalytic activity, they are specialized for different functions in the cell: while topo IIα is essential for chromosome segregation in mitotic cells, topo IIβ is involved in more specific cellular functions. A number of inhibitors are available that inhibit the catalytic activity of both topo II isoforms. However, in order to investigate the isoform-specific inhibition of these two enzymes, it is necessary to use other techniques such as siRNA (small interfering RNA) interference to selectively silence either one of the isoforms individually. Depending on the lipid charge densities and protein varieties of the cell membrane, previous studies have demonstrated that transfection efficiencies of siRNAs to hMSCs are very low. In the study reported here, we demonstrate the use of Lipofectamine RNAiMAX as an efficient transfection reagent to introduce siRNAs into human mesenchymal stem cells with significantly great efficiency to silence topo IIβ selectively. A high level of transfection efficiency (80%) was achieved by using unlabelled topo IIβ-specific siRNA oligos. Specifically, it was confirmed repeatedly that green labelled siRNAs interfere with the transfection of siRNAs. The reagent induced minimal cytotoxicity (3.5–4.5%), and cell viability of the transfected hMSCs decreased 20–30% compared with untreated cells, depending on the concentration of the reagent.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications.

          Lipofectamine 2000 is a cationic liposome based reagent that provides high transfection efficiency and high levels of transgene expression in a range of mammalian cell types in vitro using a simple protocol. Optimum transfection efficiency and subsequent cell viability depend on a number of experimental variables such as cell density, liposome and DNA concentrations, liposome-DNA complexing time, and the presence or absence of media components such as antibiotics and serum. The importance of these factors in Lipofectamine 2000 mediated transfection will be discussed together with some specific applications: transfection of primary neurons, high throughput transfection, and delivery of small interfering RNAs. Copyright 2003 Elsevier Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA.

            RNA interference (RNAi) has become a popular tool for downregulating specific gene expression in many species, including mammalian cells [Novina, C. D., and Sharp, P. A. (2004) The RNAi revolution, Nature 430, 161-164]. Synthetic double-stranded RNA sequences (siRNA) of 21-23 nucleotides have been shown in particular to have the potential to silence specifically gene function in cultured mammalian cells. As a result, there has been a significant surge of interest in the application of siRNA in functional genomics programs as a means of deciphering specific gene function. However, for siRNA functional genomics studies to be valuable and effective, specific silencing of any given target gene is essential, devoid of nonspecific knockdown and toxic side effects. For this reason, we became interested in investigating cationic liposome/lipid-mediated siRNA delivery (siFection) as a meaningful and potentially potent way to facilitate effective functional genomics studies. Accordingly, a number of cationic liposome/lipid-based systems were selected, and their formulation with siRNA was studied, with particular emphasis on formulation parameters most beneficial for siRNA use in functional genomics studies. Cationic liposome/lipid-based systems were selected from a number of commercially available products, including lipofectAMINE2000 and a range of CDAN/DOPE systems formulated from different molar ratios of the cationic cholesterol-based polyamine lipid N(1)-cholesteryloxycarbonyl-3,7-diazanonane-1,9-diamine (CDAN) and the neutral helper lipid dioleoyl-L-alpha-phosphatidylethanolamine (DOPE). Parameters that were been investigated included the lipid:nucleic acid ratio of mixing, the extent of cationic liposome/lipid-nucleic acid complex (lipoplex) formation plus medium used, the lipoplex particle size, the mode of delivery, and dose-response effects. Results suggest that concentrations during siRNA lipoplex (LsiR) formation are crucial for maximum knockdown, but the efficacy of gene silencing is not influenced by the size of LsiR particles. Most significantly, results show that most commercially available cationic liposome/lipid-based systems investigated here mediate a significant nonspecific downregulation of the total cellular protein content at optimal doses for maximal specific gene silencing and knockdown. Furthermore, one pivotal aspect of using siRNA for functional genomics studies is the need for at least minimal cellular toxicity. Results demonstrate that CDAN and DOPE with and without siRNA confer low toxicity to mammalian cells, whereas lipofectAMINE2000 is clearly toxic both as a reagent and after formulation into LsiR particles. Interestingly, LsiR particles formulated from CDAN and DOPE (45:55, m/m; siFECTamine) seem to exhibit a slower cellular uptake than LsiR particles formulated from lipofectAMINE2000. Intracellularly, LsiR particles formulated from CDAN and DOPE systems also appear to behave differently, amassing in distinct but diffuse small nonlysosomal compartments for at least 5 h after siFection. By contrast, LsiR particles formulated from lipofectAMINE2000 accumulate in fewer larger intracellular vesicles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Eukaryotic DNA topoisomerase II beta.

              Type II DNA topoisomerase activity is required to change DNA topology. It is important in the relaxation of DNA supercoils generated by cellular processes, such as transcription and replication, and it is essential for the condensation of chromosomes and their segregation during mitosis. In mammals this activity is derived from at least two isoforms, termed DNA topoisomerase II alpha and beta. The alpha isoform is involved in chromosome condensation and segregation, whereas the role of the beta isoform is not yet clear. DNA topoisomerase II beta was first reported in 1987. Here we review the research on DNA topoisomerase II beta over the last 10 years.
                Bookmark

                Author and article information

                Journal
                Cell Biol Int Rep (2010)
                Cell Biol Int Rep (2010)
                CBR
                Cell Biology International Reports
                Portland Press Ltd (Third Floor, Eagle House, 16 Procter Street, London WC1V 6NX, UK )
                2041-5346
                23 March 2011
                26 April 2011
                2011
                : 18
                : 1
                : e00010
                Affiliations
                [1]*Department of Biology, Fatih University, Stem Cell Research Laboratory, 34500 Buyukcekmece, Istanbul, Turkey
                [2]†Okayama University, Medical School, 251 Shikatacho, Okayama 7008558, Japan
                Author notes
                1To whom correspondence should be addressed (email isiksevim@ 123456fatih.edu.tr ).
                Article
                e00010
                10.1042/CBR20110003
                3475440
                23119146
                cc454fab-5ff7-4eb7-b35a-08915377aa56
                © 2011 The Author(s).

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licence ( http://creativecommons.org/licenses/by-nc/2.5/) which permits unrestricted non-commerical use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 March 2011
                : 22 March 2011
                Categories
                Research Article

                Cell biology
                ldh, lactate dehydrogenase,hmsc, human mesenchymal stem cell,msc-fbs, msc-qualified fetal bovine serum,sirna transfection,msc, mesenchymal stem cell,sirna, small interfering rna,topo ii, topoisomerase ii,rnai, rna interference,human mesenchymal stem cell,hek, human embryonic kidney,dna topoisomerase iiβ,pe, phycoerythrin,gfp, green fluorescent protein,rnaimax,dmem, dulbecco's modified eagle's medium

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content744

                Cited by5

                Most referenced authors202