0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-Density and Monodisperse Electrochemical Gold Nanoparticle Synthesis Utilizing the Properties of Boron-Doped Diamond Electrodes

      , , ,
      Nanomaterials
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Owing to its simplicity and sensitivity, electrochemical analysis is of high significance in the detection of pollutants and highly toxic substances in the environment. In electrochemical analysis, the sensitivity of the sensor and reliability of the obtained signal are especially dependent on the electrode characteristics. Electrodes with a high density of nanomaterials, which exhibit excellent activity, are useful as sensor substrates for pollutant detection. However, the effective placement of high-density nanomaterials requires a high degree of control over the particle size, particle shape, and distance between the particles on the substrate. In this study, we exploited the properties of boron-doped diamond (BDD) electrodes, which have a wide potential window, and succeeded in coating a highly dense layer of gold nanoparticles (AuNPs) at high potential. The AuNP-modified BDD (AuNP-BDD) electrodes comprising less than 100 nm AuNPs at a density of 125 particles/µm were electrochemically synthesized over a short period of 30–60 s. The AuNP-BDD electrodes were applied for detecting arsenic, which is one of the most abundant elements, and exhibited a limit of detection of 0.473 ppb in solution.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Limit of blank, limit of detection and limit of quantitation.

          * Limit of Blank (LoB), Limit of Detection (LoD), and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration of a measurand that can be reliably measured by an analytical procedure. * LoB is the highest apparent analyte concentration expected to be found when replicates of a blank sample containing no analyte are tested. LoB = mean(blank) + 1.645(SD(blank)). * LoD is the lowest analyte concentration likely to be reliably distinguished from the LoB and at which detection is feasible. LoD is determined by utilising both the measured LoB and test replicates of a sample known to contain a low concentration of analyte. * LoD = LoB + 1.645(SD (low concentration sample)). * LoQ is the lowest concentration at which the analyte can not only be reliably detected but at which some predefined goals for bias and imprecision are met. The LoQ may be equivalent to the LoD or it could be at a much higher concentration.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Optical properties of two interacting gold nanoparticles

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms.

              Heavy metal ions are non-biodegradable and contaminate most of the natural resources occurring in the environment including water. Some of the heavy metals including Lead (Pb), Mercury (Hg), Arsenic (As), Chromium (Cr) and Cadmium (Cd) are considered to be highly toxic and hazardous to human health even at trace levels. This leads to the requirement of fast, accurate and reliable techniques for the detection of heavy metal ions. This review presents various electrochemical detection techniques for heavy metal ions those are user friendly, low cost, provides on-site and real time monitoring as compared to other spectroscopic and optical techniques. The categorization of different electrochemical techniques is done on the basis of different types of detection signals generated due to presence of heavy metal ions in the solution matrix like current, potential, conductivity, electrochemical impedance, and electrochemiluminescence. Also, the recent trends in electrochemical detection of heavy metal ions with various types of sensing platforms including metals, metal films, metal oxides, nanomaterials, carbon nano tubes, polymers, microspheres and biomaterials have been evoked.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                NANOKO
                Nanomaterials
                Nanomaterials
                MDPI AG
                2079-4991
                May 2022
                May 19 2022
                : 12
                : 10
                : 1741
                Article
                10.3390/nano12101741
                35630964
                cba86788-4ff2-452c-806b-721bebb3f4cb
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article