0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of chronic stress on gel-forming mucins in the small intestine of BALB/c mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intestinal homeostasis involves the collaboration of gut barrier components, such as goblet cells and IgA–microbiota complexes, that are under the control of stress that promotes inflammatory responses addressed primarily in the colon. The aim of this study was to evaluate the effect of stress on mucins, goblet cells, and proinflammatory parameters in the proximal and distal regions of the small intestine. A group ( n = 6) of female 8-week-old BALB/c mice underwent board immobilization stress (2 h per day for 4 days) and were sacrificed with isoflurane. Samples from proximal and distal small segments were collected to analyze the following: 1) goblet cells stained with periodic acid-Schiff (PAS) and with alcian blue (AB) to visualize histologically neutral and acidic mucins, respectively; 2) IgA–microbiota complexes identified by flow cytometry in intestinal lavages; and 3) MUC2, MUC5AC, and IL-18 mRNA levels in whole mucosal scrapings by reverse transcription–qPCR. Regarding the unstressed group, in the proximal region of small intestine both PAS+ and AB+ goblet cells were unchanged; however, MUC5AC and IL-18 mRNA levels were increased, and the percentage of IgA–microbiota complexes was reduced. In the distal segment, the number of PAS+ goblet cells was increased, whereas the number of AB+ goblet cells was reduced and did not affect the remaining parameters. The data suggest that stress induces inflammation in the proximal small intestine; these findings may provide an experimental reference for human diseases that may affect the proximal small intestine, such as Crohn’s disease, in which stress contributes to the progression of intestinal inflammation or relapse.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regional specialization within the intestinal immune system.

            The intestine represents the largest compartment of the immune system. It is continually exposed to antigens and immunomodulatory agents from the diet and the commensal microbiota, and it is the port of entry for many clinically important pathogens. Intestinal immune processes are also increasingly implicated in controlling disease development elsewhere in the body. In this Review, we detail the anatomical and physiological distinctions that are observed in the small and large intestines, and we suggest how these may account for the diversity in the immune apparatus that is seen throughout the intestine. We describe how the distribution of innate, adaptive and innate-like immune cells varies in different segments of the intestine and discuss the environmental factors that may influence this. Finally, we consider the implications of regional immune specialization for inflammatory disease in the intestine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system.

              The gastrointestinal tract is covered by mucus that has different properties in the stomach, small intestine, and colon. The large highly glycosylated gel-forming mucins MUC2 and MUC5AC are the major components of the mucus in the intestine and stomach, respectively. In the small intestine, mucus limits the number of bacteria that can reach the epithelium and the Peyer's patches. In the large intestine, the inner mucus layer separates the commensal bacteria from the host epithelium. The outer colonic mucus layer is the natural habitat for the commensal bacteria. The intestinal goblet cells secrete not only the MUC2 mucin but also a number of typical mucus components: CLCA1, FCGBP, AGR2, ZG16, and TFF3. The goblet cells have recently been shown to have a novel gate-keeping role for the presentation of oral antigens to the immune system. Goblet cells deliver small intestinal luminal material to the lamina propria dendritic cells of the tolerogenic CD103(+) type. In addition to the gel-forming mucins, the transmembrane mucins MUC3, MUC12, and MUC17 form the enterocyte glycocalyx that can reach about a micrometer out from the brush border. The MUC17 mucin can shuttle from a surface to an intracellular vesicle localization, suggesting that enterocytes might control and report epithelial microbial challenge. There is communication not only from the epithelial cells to the immune system but also in the opposite direction. One example of this is IL10 that can affect and improve the properties of the inner colonic mucus layer. The mucus and epithelial cells of the gastrointestinal tract are the primary gate keepers and controllers of bacterial interactions with the host immune system, but our understanding of this relationship is still in its infancy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
                Bookmark

                Author and article information

                Journal
                J Med Life
                J Med Life
                JMedLife
                Journal of Medicine and Life
                Carol Davila University Press (Romania )
                1844-122X
                1844-3117
                March 2024
                : 17
                : 3
                : 326-333
                Affiliations
                [1 ]Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
                [2 ]Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, México
                [3 ]Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca de Lerdo, México
                Author notes
                [* ] Corresponding author Marycarmen Godínez-Victoria Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México E-mail: mgodinezv@ 123456ipn.mx
                Fabiola Guzmán-Mejía Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, México E-mail: fabiolagm03@ 123456gmail.com
                Article
                JMedLife-17-326
                10.25122/jml-2023-0473
                11262609
                39044931
                cba29145-68cd-40eb-a164-7d166d87d30d
                © 2024 by the authors.

                This open access article is published and licensed by the Journal of Medicine and Life under Creative Commons Attribution 4.0 International (CC BY 4.0). http://creativecommons.org/licenses/by/4.0

                History
                : 27 November 2023
                : 16 February 2024
                Categories
                Original Article

                Medicine
                immobilization stress,alcian blue,mucin 2,mucin 5ac,interleukin-18,iga–microbiota complexes
                Medicine
                immobilization stress, alcian blue, mucin 2, mucin 5ac, interleukin-18, iga–microbiota complexes

                Comments

                Comment on this article